摘要:
A surface light source device includes a light source body having an internal space. A partition wall is disposed in the internal space of the light source body to divide the internal space into a plurality of discharge spaces. The partition wall has end portions that make contact with inner surface of the light source body. The partition wall has a throughhole, through which the discharge spaces are connected to each other. The light source body includes a voltage applying part that applies a voltage to the discharge space to generate plasma in the discharge space. A barrier is disposed adjacent to the throughhole to restrict a flow of the plasma generated from a discharge gas through the throughhole. The barrier screens the throughhole to restrict the flow of the plasma through the throughhole. Therefore, uniformity of luminance of the surface light source device is improved.
摘要:
A surface light source device includes a light source body having an internal space. A partition wall is disposed in the internal space of the light source body to divide the internal space into a plurality of discharge spaces. The partition wall has end portions that make contact with inner surface of the light source body. The partition wall has a throughhole, through which the discharge spaces are connected to each other. The light source body includes a voltage applying part that applies a voltage to the discharge space to generate plasma in the discharge space. A barrier is disposed adjacent to the throughhole to restrict a flow of the plasma generated from a discharge gas through the throughhole. The barrier screens the throughhole to restrict the flow of the plasma through the throughhole. Therefore, uniformity of luminance of the surface light source device is improved.
摘要:
A planar light source device includes a body, a plurality of partition members, and first and second electrodes. The body includes a discharge space. The partition member divides the discharge space into a plurality of discharge regions. The first electrodes are disposed at the edge portions of the body, and a discharge voltage is applied to the first electrodes. The second electrode is disposed between the partition members. Therefore, the second electrode corresponding to the discharge region prevents deflection to enhance optical characteristics of the planar light source device. Furthermore, the second electrode lowers a discharge start time and reduces a discharging time.
摘要:
A liquid crystal display device capable of improving a contrast ratio and of reducing a halo phenomenon with low power consumption and a method for local dimming driving the same are disclosed. A method for local dimming driving a liquid crystal display includes determining a local dimming value for each of light-emitting blocks based on analyzing input image data by the unit of light-emitting block provided in a backlight unit; determining a halo degree by analyzing a total light quantity of black pixels having black gradations in the input image data; adjusting the number of spatial filtering repetitions based on the determined halo degree; compensating the local dimming value by performing spatial filtering for the local dimming value an adjusted number of times; and controlling brightness of the backlight unit for each of the blocks by using the compensated local dimming value.
摘要:
A liquid crystal display device includes a data analysis unit to analyze image data of an input image data stream for variation of luminance between the image data, a black data processing unit to insert black data into the input image data stream based on the variation of luminance analyzed by the data analysis unit and to output an output image data stream, and a liquid crystal panel to display images based on the output image data stream output from the black data processing unit.
摘要:
Capacitors for semiconductor devices and methods of fabricating such capacitors are provided The disclosed capacitor comprises an interlayer dielectric layer (ILD) pattern having an opening exposing a portion of the underlying semiconductor substrate, a silicide pattern formed on the exposed substrate, and a lower electrode covering an inner wall and bottom of the opening. A dielectric layer is formed on the lower electrode, and an upper electrode is disposed on the dielectric layer. The dielectric layer preferably comprises a high k-dielectric layer such as tantalum oxide. The disclosed method comprises forming an ILD pattern with an opening that exposes a portion of a semiconductor substrate forming an optional silicide pattern on the exposed substrate, forming a lower electrode on the inner wall of the opening and sequentially forming a dielectric layer and an upper electrode on the resulting structure.
摘要:
A surface light source device includes a lamp body, a space dividing member, a discharge gas supplying member and a voltage applying part. The lamp body includes a flat shaped space and a fluorescent layer disposed in the flat shaped space to convert an invisible light into a visible light. The space dividing member divides the flat shaped space into a plurality of discharge spaces. The discharge gas supplying member is disposed to pass through the space dividing member and is fixed to the space dividing member, and supplies the discharge spaces with a discharge gas that generates the invisible light. The voltage applying part applies a discharge voltage to the discharge gas. Therefore, the lifetime of the surface light source device generating a planar light is increased, and the luminance of the light becomes uniform so that the display quality of an image is improved.
摘要:
A surface light source device includes a light source body having an inner space into which a discharge gas is injected, and an electrode for applying a voltage to the discharge gas. The light source body includes partition walls dividing the inner space into a plurality of discharge spaces. The partition walls have a width for suppressing formation of a parasite capacitance through which a current flows therein.
摘要:
A secondary battery includes an electrode assembly for generating electricity, a can for accommodating the electrode assembly, and a cap assembly. The can has an open top and the cap assembly seals the open top. The electrode assembly has a plurality of electrode tabs through which electricity is supplied. The cap assembly includes an insulating case that has a plurality of tab drawing grooves. Each of the tab drawing grooves is capable of being occupied by one of the electrode tabs. A number of the tab drawing grooves is greater than a number of the electrode tabs. One of the electrode tabs can be drawn through one of the tab drawing grooves. Other tab drawing grooves are left as spare grooves, and therefore it is not necessary to change the shape of the insulating case even though the structure of the secondary battery is changed.
摘要:
The present invention provides method and device for driving local dimming in a liquid crystal display device which enables adaptive application of a gradation roll-off according to an image characteristic. The method for driving local dimming in a liquid crystal display device includes the steps of determining a local dimming value of each light emitting block by analyzing a received image data light emitting block by light emitting block of a backlight unit, producing a pixel compensating coefficient on a light quantity change of each pixel by using the local dimming value of each light emitting block, producing a required gradient value by compensating the received image data by using the pixel compensating coefficient, and producing maximum required gradient values for one frame and an average value of the maximum required gradient values for one frame, determining a roll-off end point of a gradient roll-off section according to the maximum required gradient value, and determining a roll-off starting point of the gradient roll-off section according to the average of the maximum required gradient values, setting a gradient change curve of the gradient roll-off section by using the roll-off starting point and end point, and producing a gain value of each pixel from the gradient change curve, and forwarding an output gradient value by correcting the required gradient value by using the gain value of each pixel.