摘要:
Provided is a method of optimizing statistical timing of an integration circuit, the method including applying subtle changes of mean arrival times with respect to each of nodes in a timing graph of an integrated circuit to ADD operations and MAX operations of a block-based statistical static timing analysis (SSTA) method and approximating the corresponding operations; generating Jacobian matrixes between each node by using matrix components including differential coefficients calculated during linear approximation of the operations; calculating changed arrival time values of the circuit by propagating the Jacobian matrixes from a virtual sink node to a virtual source node; and calculating timing yield criticalities, which are variances of timing yield of the circuit due to subtle changes of mean arrival times with respect to each node, based on values obtained by the propagation. Accordingly, timing yield criticality is calculated based on linear approximation of ADD operations and MAX operations of statistical static timing analysis (SSTA), and thus the calculation complexity is linear with respect to the total number of nodes, and critical nodes significantly affecting the timing yield of a circuit can be extracted more accurately.
摘要:
Provided is a method of optimizing statistical timing of an integration circuit, the method including applying subtle changes of mean arrival times with respect to each of nodes in a timing graph of an integrated circuit to ADD operations and MAX operations of a block-based statistical static timing analysis (SSTA) method and approximating the corresponding operations; generating Jacobian matrixes between each node by using matrix components including differential coefficients calculated during linear approximation of the operations; calculating changed arrival time values of the circuit by propagating the Jacobian matrixes from a virtual sink node to a virtual source node; and calculating timing yield criticalities, which are variances of timing yield of the circuit due to subtle changes of mean arrival times with respect to each node, based on values obtained by the propagation. Accordingly, timing yield criticality is calculated based on linear approximation of ADD operations and MAX operations of statistical static timing analysis (SSTA), and thus the calculation complexity is linear with respect to the total number of nodes, and critical nodes significantly affecting the timing yield of a circuit can be extracted more accurately.
摘要:
The present invention relates to a level converter used in a multiple supply voltage system that is required to design a low-power and high-performance semiconductor, and more particularly, to a single supply pass gate level converter (SPLC) for a multiple supply voltage system, which has low power consumption, operates at high speed, and uses only a single supply voltage. The SPLC includes an input data providing circuit unit which receives an input signal of a low supply voltage; a data inversion circuit unit which receives input data from the input data providing circuit unit and outputs inversed input data; a feedback circuit unit which is fed back by an output of the data inversion circuit unit; and a data output buffer which inverses an output of the data inversion circuit unit and outputs an inversed signal. The input data providing circuit unit, the data inversion circuit unit, the feedback circuit unit, and the data output buffer are all driven by a high supply voltage such that only a single supply voltage which is the high supply voltage is required.
摘要:
The present invention relates to a level converter used in a multiple supply voltage system that is required to design a low-power and high-performance semiconductor, and more particularly, to a single supply pass gate level converter (SPLC) for a multiple supply voltage system, which has low power consumption, operates at high speed, and uses only a single supply voltage. The SPLC includes an input data providing circuit unit which receives an input signal of a low supply voltage; a data inversion circuit unit which receives input data from the input data providing circuit unit and outputs inversed input data; a feedback circuit unit which is fed back by an output of the data inversion circuit unit; and a data output buffer which inverses an output of the data inversion circuit unit and outputs an inversed signal. The input data providing circuit unit, the data inversion circuit unit, the feedback circuit unit, and the data output buffer are all driven by a high supply voltage such that only a single supply voltage which is the high supply voltage is required.
摘要:
The present invention relates to a method to manufacture steel sheets coated with Zn—Fe alloy with an excellent corrosion resistance used in producing a body frame and a chassis of an automobile under optimal coating conditions by adjusting the temperature, pH, electric current density of an electrolyte consisting of zinc sulfate hydrate, iron sulfate hydrate, ammonium sulfate and potassium chloride as well as the thickness of a coating layer.