Abstract:
A wagering gaming apparatus is provided, comprising a 3-dimensional (3D) display device configured to create for a player a visual illusion of a 3D scene for a wagering game, the 3D scene having perceived depth in a z-direction perpendicular to a physical screen having width in an x-direction and height in a y-direction; one or more sensor devices configured to sense a physical location of one or more anatomical features of the player; at least one processor; and at least one non-transitory processor-readable storage medium storing processor-executable instructions. The processor-executable instructions, when executed by the at least one processor, cause the at least one processor to perform various adjustments regarding the 3D scene based on the sensed physical location of an anatomical feature of the player.
Abstract:
A method for controlling a wagering gaming apparatus includes rendering a 3-dimensional display of a game, comprising visually projecting a game component out of a screen of a display device and into a 3-dimensional space between the screen and a player; receiving, from a contactless sensor device, location information indicative of a location of an anatomical feature of a player of the wagering game apparatus; generating a virtual object corresponding to the anatomical feature of the player; rendering the virtual object in the 3-dimensional space, comprising visually projecting the virtual object out of the screen of the display device and into the 3-dimensional space between the screen and the player; associating a virtual vector field in the 3-dimensional space with the virtual object; and causing the game component to move in the 3-dimensional space in response to the virtual vector field associated with the virtual object.
Abstract:
A wagering gaming apparatus is provided, comprising a 3-dimensional (3D) display device configured to create for a player a visual illusion of a 3D scene for a wagering game, the 3D scene having perceived depth in a z-direction perpendicular to a physical screen having width in an x-direction and height in a y-direction; one or more sensor devices configured to sense a physical location of one or more anatomical features of the player; at least one processor; and at least one non-transitory processor-readable storage medium storing processor-executable instructions. The processor-executable instructions, when executed by the at least one processor, cause the at least one processor to perform various adjustments regarding the 3D scene based on the sensed physical location of an anatomical feature of the player.
Abstract:
A method for controlling a wagering gaming apparatus includes rendering a 3-dimensional display of a game, comprising visually projecting a game component out of a screen of a display device and into a 3-dimensional space between the screen and a player; receiving, from a contactless sensor device, location information indicative of a location of an anatomical feature of a player of the wagering game apparatus; generating a virtual object corresponding to the anatomical feature of the player; rendering the virtual object in the 3-dimensional space, comprising visually projecting the virtual object out of the screen of the display device and into the 3-dimensional space between the screen and the player; associating a virtual vector field in the 3-dimensional space with the virtual object; and causing the game component to move in the 3-dimensional space in response to the virtual vector field associated with the virtual object.
Abstract:
An electronic gaming machine for stereoscopic display of game components is provided. The machine includes at least one processor, memory storing processor-executable instructions in communication with the at least one processor, a stereoscopic display. Executing the instructions by the at least one processor causes the processor to: identify, for display, at least one game component in accordance with a set of game rules for a given game; select a three-dimensional intensity level for displaying the at least one game component; render left and right eye images based on the selected three-dimensional intensity level; and provide the rendered left and right eye images to the stereoscopic display, for presentation to the left and right eyes, respectively, of a player.
Abstract:
A computer-implemented method for enhancing game components in a gaming system using various three-dimensional enhancements. The three-dimensional enhancements may involve stacks of gaming components to provide and integrate additional symbols, multi-faceted gaming components, multi-faceted gaming surfaces running multiple games in parallel, items animating to simulate real-world physics, merging components, shapes to push up or down gaming components to create stacks, and so on. Further example three-dimensional enhancements are described.
Abstract:
A wagering gaming apparatus is provided, comprising a 3-dimensional (3D) display device configured to create for a player a visual illusion of a 3D scene for a wagering game, the 3D scene having perceived depth in a z-direction perpendicular to a physical screen having width in an x-direction and height in a y-direction; one or more sensor devices configured to sense a physical location of one or more anatomical features of the player; at least one processor; and at least one non-transitory processor-readable storage medium storing processor-executable instructions. The processor-executable instructions, when executed by the at least one processor, cause the at least one processor to perform various adjustments regarding the 3D scene based on the sensed physical location of an anatomical feature of the player.
Abstract:
A wagering gaming apparatus is provided, comprising a 3-dimensional (3D) display device; at least one processor programmed to cause the 3D display device to display a 3D scene for a game, the 3D scene comprising a virtual 3D space in which a plurality of virtual game components are displayed; and at least one contactless sensor device configured to sense a location and shape of a physical object in a physical 3D space and generate 3D information indicative of the location and shape of the physical object in the physical 3D space. In some embodiments, the at least one processor is programmed to: update a 3D model for a virtual object in the 3D scene, the virtual object corresponding to the physical object; and detect an interaction between the virtual object and at least one virtual game component in the 3D scene.