摘要:
The present disclosure describes examples of systems and methods of wireless remote control of appliances and medical devices using a canal hearing device upon manual activation of a switch placed in the concha cavity behind the tragus. The manual activation of the switch may be by applying a force to the tragus by a finger of a user of the canal hearing device. In one embodiment the lateral end comprises one or more manually activated switches, a wireless antenna, and a battery cell. In some examples, the wireless electronics include low energy Bluetooth. The appliance may be any device with wireless capabilities, for example an electronic lock, a thermostat, an electronic lighting, a telephone, a kitchen appliance, a medical alert system, a television, a medical device, and a smart glass. The inconspicuous and secure wear of the hearing device allows for active lifestyle, including exercise, and more discrete communications.
摘要:
Examples of retaining seal assemblies for acoustically sealing and retaining a canal hearing device or an earpiece within the ear canal are disclosed. The retaining seal assembly may include one or more flanges and a clip element. The flanges may include elongate trenches along an exterior surface of one or more of the flanges. The elongate trenches may allow the flange to conform to the shape of the ear canal and distribute concentric compressive forces when the seal assembly is inserted in the ear canal. The clip element may be formed of a relatively rigid material and may include one or more locking tabs. The conforming flanges may be concentrically positioned over the clip element. The seal assembly may include a debris barrier to provide protection for a sound outlet of the canal hearing device or the earpiece.
摘要:
In one embodiment, a system includes a programmable hearing device configured to deliver a sequence of outputs in-situ, each output corresponding to a sound segment, wherein the outputs are delivered according to fitting parameters programmed into the programmable hearing device, and a computing device communicatively coupled online to a remote server. The computing device may be configured to receive a consumer input indicative of a subjective assessment of the consumer of each of the sound segments, wherein the consumer input is configured to adjust one or more fitting parameters associated with the output corresponding to the sound segment being assessed, wherein the fitting application is configured to make adjustments to the fitting parameters in accordance with the consumer input.
摘要:
Examples of systems and methods for profiling the hearing ability of a consumer are disclosed. One example includes a personal computer and a handheld device configured to produce calibrated acoustic output at suprathreshold levels above 20 db HL, and at step levels of 10-20 decibels, and presented test frequency bands across an audiometric frequency range from 400 to 8000Hz. The consumer's minimal audibility levels are registered, and a hearing profile score is presented to indicate hearing ability and hearing aid candidacy. In some embodiments, band-limited natural sounds are presented. Systems and methods disclosed herein, with considerations for noise present in the consumer's environment, allow for rapid calibrated hearing profiling, using a standard personal computer and minimal hardware, thus particularly suited for self-testing outside clinical environments such as at home or the office.
摘要:
Disclosed herein are systems and methods enabling hearing aid fitting by a non-expert consumer at home. The method in one embodiment involves delivering a sequence of test audio signals corresponding to natural sound segments to a non-acoustic input of a programmable hearing device in-situ, while allowing the consumer to adjust fitting parameters based perceptual assessment of hearing device output. The sound segments define a fitting soundscape representing a practical range of sounds within the normal human auditory range, with each sound segment corresponding to one or more fitting parameters of the programmable hearing device. The consumer is instructed to listen to the output of the in-situ hearing device and adjust controls related to corresponding fitting parameters. In one embodiment, the fitting system comprises a personal computer and a handheld device providing calibrated test audio signals and a programming interface. The systems and methods disclosed herein allow home dispensing of hearing devices without requiring specialized instruments or clinical settings.
摘要:
Disclosed herein are systems and methods enabling hearing aid fitting by a non-expert consumer. The method in one embodiment involves delivering a sequence of test audio signals corresponding to natural sound segments to a non-acoustic input of a programmable hearing device in-situ, while allowing the consumer to adjust fitting parameters based perceptual assessment of hearing device output. The sound segments define a fitting soundscape within the normal human auditory range, with each sound segment corresponding to one or more fitting parameters of the programmable hearing device. The consumer is instructed to listen to the output of the in-situ hearing device and adjust controls related to corresponding fitting parameters. In one embodiment, the fitting system comprises a personal computer and a handheld device providing calibrated test audio signals and programming interface. The systems and methods allow home dispensing of hearing devices without requiring specialized instruments.
摘要:
Methods and systems of interactive fitting of a hearing aid by a non-expert person without resorting to a clinical setup are disclosed. The system includes an audio generator for delivering test audio signals at predetermined levels to a non-acoustic input of a programmable hearing aid in-situ. The consumer is instructed to listen to the output of the hearing device in-situ and interactively adjust fitting parameters of the programmable hearing aid according to the perceptual assessment of the hearing aid output in-situ. The output is representative of the test audio signal presented to the non-acoustic input. In one embodiment, the fitting system includes a personal computer, a handheld device communicatively coupled to the personal computer, and a fitting software application. In one embodiment, the fitting system includes an earphone for conducting a hearing evaluation.
摘要:
The present disclosure describes examples of systems and methods of wireless remote control of appliances and medical devices using a canal hearing device upon manual activation of a switch placed in the concha cavity behind the tragus. The manual activation of the switch may be by applying a force to the tragus by a finger of a user of the canal hearing device. In one embodiment the lateral end comprises one or more manually activated switches, a wireless antenna, and a battery cell. In some examples, the wireless electronics include low energy Bluetooth. The appliance may be any device with wireless capabilities, for example an electronic lock, a thermostat, an electronic lighting, a telephone, a kitchen appliance, a medical alert system, a television, a medical device, and a smart glass. The inconspicuous and secure wear of the hearing device allows for active lifestyle, including exercise, and more discrete communications.
摘要:
Disclosed herein are systems and methods enabling self-fitting by a non-expert consumer. The method in some examples involves transmitting a wireless command by a computing device to a hearing device in-situ to produce a sequence of test audio signals corresponding to natural sound segments, while allowing the consumer to adjust fitting parameters based on perceptual assessment of hearing device output. The sound segments may represent a practical range of sounds within the normal human auditory range, with each sound segment selected to correspond to one or more fitting parameters of the programmable hearing device. The consumer is instructed to listen to the output of the in-situ hearing device and adjust controls on the personal computer's graphical user interface related to corresponding fitting parameters. The systems and methods disclosed herein allow dispensing or adjusting of hearing devices without requiring specialized instruments or clinical settings.
摘要:
The present disclosure describes examples of systems and methods of wireless remote control of appliances using a hearing device, for example upon manual activation of a switch placed in the concha cavity behind the tragus. In some examples, the hearing device includes one or more manually activated switches, a wireless antenna, and a battery cell. In some examples, the wireless electronics include low energy Bluetooth capability. The appliance may be any device with wireless control capability, for example an electronic lock, a thermostat, an electronic lighting, a telephone, a kitchen appliance, a medical alert system, a television, a medical device, and a smart glass.