Abstract:
Methods and apparatus to communicate via a weld cable are disclosed. An example weld circuit communications device includes a receiver circuit, a processor, and a local communications adapter. The receiver circuit to receive a communication via a weld circuit while current is flowing through the weld circuit or after the current has stopped flowing through the weld circuit, the communication including weld voltage feedback information measured at a device remote from a power supply and remote from the weld circuit communications device while the current is flowing through the weld circuit. The processor generates power supply control information based on the weld voltage feedback information. The local communications adapter transmits the power supply control information to control welding-type power output by a power converter to regulate a weld voltage to a weld voltage setpoint.
Abstract:
Methods and apparatus to communicate via a weld cable are disclosed. An example welding-type power supply includes a power converter, a receiver circuit, and a controller. The power converter converts input power to welding-type power based on a weld voltage setpoint and to output the welding-type power via a weld circuit. The receiver circuit receives a communication via the weld circuit while current is flowing through the weld circuit or after the current has stopped flowing through the weld circuit. The communication includes weld voltage feedback information measured at a device remote from the power supply while the current is flowing through the weld circuit. The controller controls the welding-type power output by the power converter according to a voltage feedback loop using the weld voltage feedback information to regulate a weld voltage at the remote device to the weld voltage setpoint.
Abstract:
Systems, methods, and apparatus to control weld current in a preheating system are disclosed. An example preheating power supply includes power conversion circuitry configured to output welding-type power via a first output power connector and a second output power connector, and a bypass path prevention circuit configured to prevent less than a threshold voltage applied to the first output power connector and the second output power connector from a different power supply from causing current to flow between the first output power connector and the second output power connector.
Abstract:
Various welding systems that provide communication over auxiliary or weld power lines are provided. The disclosed embodiments may include a multi-process welding power supply that is communicatively coupled to a pendant via an auxiliary conduit that facilitates the exchange of data and power between components of the welding system. In some embodiments, the pendant may also include auxiliary outlets that allow an operator to power auxiliary devices at the weld location. The disclosed embodiments further include a pendant with a wire spool and wire feeder drive circuitry that is configured to activate spooling during MIG welding. Embodiments are provided that also allow for bidirectional data communication over a power line in networked welding systems.
Abstract:
Methods and systems for creating and controlling an AC output for welding, plasma cutting or heating are provided. One embodiment of the present disclosure achieves a desired square wave AC output and reduces the number of circuit components needed by combining components of a buck converter and a full bridge inverter. Current flow paths through a power control circuit that are generated via switching of transistors in the circuit on and off are provided. In one embodiment, a pulse width modulation leg, which controls the level of current flow through an inductor, is provided. Certain embodiments include a bidirectional buck converter that converts an unregulated DC flow to a regulated DC flow through an inductor. In one embodiment, a steering leg is provided, which controls a direction of current flow through the inductor. Additionally, an output clamp circuit, which suppresses the parasitic load inductance during polarity reversal is provided.
Abstract:
Systems, methods, and apparatus to control weld current in a preheating system are disclosed. An example preheating power supply includes power conversion circuitry configured to output welding-type power via a first output power connector and a second output power connector, and a bypass path prevention circuit configured to prevent less than a threshold voltage applied to the first output power connector and the second output power connector from a different power supply from causing current to flow between the first output power connector and the second output power connector.
Abstract:
Methods and apparatus to communicate via a weld cable are disclosed. An example weld circuit communications device includes a receiver circuit, a processor, and a local communications adapter. The receiver circuit to receive a communication via a weld circuit while current is flowing through the weld circuit or after the current has stopped flowing through the weld circuit, the communication including weld voltage feedback information measured at a device remote from a power supply and remote from the weld circuit communications device while the current is flowing through the weld circuit. The processor generates power supply control information based on the weld voltage feedback information. The local communications adapter transmits the power supply control information to control welding-type power output by a power converter to regulate a weld voltage to a weld voltage setpoint.
Abstract:
Hybrid welding systems and portable hybrid welding modules are disclosed. An example portable welding power supply includes an output converter circuit to convert direct current (DC) power to welding power, the DC power comprising at least one of DC input power or converted battery power. The portable welding power supply also includes a battery and a bidirectional DC-DC converter circuit configured to receive the DC input power and coupled to the battery. The portable welding power supply also includes a control circuit configured to control the output converter to output the welding power, control the bidirectional DC-DC converter circuit to convert the DC input power to charge the battery, and control the bidirectional DC-DC converter circuit to convert power from the battery to provide the battery power to the output converter.
Abstract:
Methods and systems for creating and controlling an AC output for welding, plasma cutting or heating are provided. One embodiment of the present disclosure achieves a desired square wave AC output and reduces the number of circuit components needed by combining components of a buck converter and a full bridge inverter. Current flow paths through a power control circuit that are generated via switching of transistors in the circuit on and off are provided. In one embodiment, a pulse width modulation leg, which controls the level of current flow through an inductor, is provided. Certain embodiments include a bidirectional buck converter that converts an unregulated DC flow to a regulated DC flow through an inductor. In one embodiment, a steering leg is provided, which controls a direction of current flow through the inductor. Additionally, an output clamp circuit, which suppresses the parasitic load inductance during polarity reversal is provided.
Abstract:
The present invention is directed to a system and method of remotely controlling a welding machine with command signals transmitted to the welding power source across a weld cable connecting the power source to a remote device, such a wire feeder. A transmitter transmits the control commands containing desired welding operational parameters to a receiver disposed in the power source across a weld cable also designed to carry welding power from the power source to the wire feeder.