Abstract:
A controller for a welding system adapted to determine a value of a weld secondary parameter across a weld secondary component based on a sensed parameter is provided. The controller may also be adapted to compare the determined value to a reference value range and to alert a user to a presence and location of a weld secondary error when the determined value is outside the referenced value range.
Abstract:
A welding system and method provide for generating a controlled waveform for welding power output, the waveform comprising a plurality of successive peak phases followed by a short circuit between a welding wire electrode and an advancing weld puddle. Each then present peak phase is regulated based upon at least the immediately preceding short circuit to control the short circuit that will occur following the then present peak phase. Some embodiments permit regulating at least one waveform phase based upon at least the immediately preceding short circuit to control the next short circuit that will occur, and regulating at least one short response phase based upon at least the immediately preceding short circuit to control the next short circuit that will occur.
Abstract:
A controller for a welding system adapted to determine a value of a weld secondary parameter across a weld secondary component based on a sensed parameter is provided. The controller may also be adapted to compare the determined value to a reference value range and to alert a user to a presence and location of a weld secondary error when the determined value is outside the referenced value range.
Abstract:
A method includes receiving data corresponding to a voltage level over time and a current level over time. The method also includes determining a first ratio corresponding to a voltage ramp percent or a voltage falling edge percent with respect to a peak in the voltage level and determining a second ratio corresponding to a current ramp ratio or a current falling edge ratio with respect to a peak in the current level. The method further includes determining, based on a comparison between the first ratio and the second ratio, whether to increment, decrement, or maintain an inductance compensation estimation value corresponding to an estimated inductance present in one or more secondary components associated with the welding operation.
Abstract:
A method includes receiving data corresponding to a voltage level over time and a current level over time. The method also includes determining a first ratio corresponding to a voltage ramp percent or a voltage falling edge percent with respect to a peak in the voltage level and determining a second ratio corresponding to a current ramp ratio or a current falling edge ratio with respect to a peak in the current level. The method further includes determining, based on a comparison between the first ratio and the second ratio, whether to increment, decrement, or maintain an inductance compensation estimation value corresponding to an estimated inductance present in one or more secondary components associated with the welding operation.
Abstract:
A controller for a welding system adapted to determine a value of a weld secondary parameter across a weld secondary component based on a sensed parameter is provided. The controller may also be adapted to compare the determined value to a reference value range and to alert a user to a presence and location of a weld secondary error when the determined value is outside the referenced value range.
Abstract:
A welding system and method provide for generating a controlled waveform for welding power output, the waveform comprising a plurality of successive peak phases followed by a short circuit between a welding wire electrode and an advancing weld puddle. Each then present peak phase is regulated based upon at least the immediately preceding short circuit to control the short circuit that will occur following the then present peak phase. Some embodiments permit regulating at least one waveform phase based upon at least the immediately preceding short circuit to control the next short circuit that will occur, and regulating at least one short response phase based upon at least the immediately preceding short circuit to control the next short circuit that will occur.
Abstract:
A method includes receiving data corresponding to a voltage level over time and a current level over time. The method also includes determining a first ratio corresponding to a voltage ramp percent or a voltage falling edge percent with respect to a peak in the voltage level and determining a second ratio corresponding to a current ramp ratio or a current falling edge ratio with respect to a peak in the current level. The method further includes determining, based on a comparison between the first ratio and the second ratio, whether to increment, decrement, or maintain an inductance compensation estimation value corresponding to an estimated inductance present in one or more secondary components associated with the welding operation.
Abstract:
Welding power is generated by first generating two different current waveforms, and comparing the waveform values for control intervals to select which waveform provides the greater current. The waveforms are for different transfer modes, such as one for a pulsed arc portion, and another for a short-circuit transfer mode or for short-circuit clearing. The waveforms may be programmed by settings in a state machine. A balance or relative prioritization in the comparison may be influenced by user inputs. The resulting hybrid process has aspects of both spray transfer and short-circuit transfer modes.
Abstract:
A method includes receiving data corresponding to a voltage level over time and a current level over time. The method also includes determining a first ratio corresponding to a voltage ramp percent or a voltage falling edge percent with respect to a peak in the voltage level and determining a second ratio corresponding to a current ramp ratio or a current falling edge ratio with respect to a peak in the current level. The method further includes determining, based on a comparison between the first ratio and the second ratio, whether to increment, decrement, or maintain an inductance compensation estimation value corresponding to an estimated inductance present in one or more secondary components associated with the welding operation.