Abstract:
A wideband compound phase-retardation film including a half-wave phase-retardation film and a quarter-wave phase-retardation film with different reactive rod-like liquid crystal combination is provided. The half-wave phase-retardation film uses material having a birefringence of Δn1, and the quarter-wave phase-retardation film uses material having a birefringence of Δn2. The birefringence Δn1 is smaller than the birefringence Δn2. Furthermore, the birefringence dispersion Δn1(λ) is also smaller than Δn2(λ).
Abstract:
A wavelength converting composition is provided, including: a plurality of first cholesteric liquid crystal flakes (CLCFs); a plurality of first quantum dots; and a resin, wherein the first CLCFs and the first quantum dots are dispersed in the resin, and wherein when first light passes the wavelength converting composition, the first quantum dots are excited by the first light and emit second light having a wavelength different from a wavelength of the first light, and the second light is reflected by the first CLCFs a number of times to increase a gain. A wavelength converting structure, a luminescence film having the wavelength converting structure, and a backlit component having the wavelength converting composition are also provided.
Abstract:
An embodiment provides a polymer-stabilized optical isotropic liquid crystal formulation, including 50 to 99.5 parts by weight of an optical isotropic liquid crystal material; and 0.5 to 50 parts by weight of polymer, wherein the polymer is polymerized by an acrylic monomer containing fluorine groups and an acrylic monomer with a liquid crystal phase and/or an acrylic monomer without a liquid crystal phase.
Abstract:
A wideband compensation stack film comprises a chiral-half-wave compensation film and a chiral-quarter-wave compensation film. The chiral-quarter-wave compensation film is directly in contact with the chiral half-wave compensation film. Along the contact surface, the first layer liquid crystal molecule of the chiral-quarter-wave compensation film is arranged in the last layer of liquid crystal molecule of the chiral-half-wave compensation film. The retardation values (R) and the optical axis (Z) of the stack films follow a linear relationship: R=aZ+b.
Abstract:
A display module includes a display panel and a reflective optical film. The display panel has a display surface. The reflective optical film is disposed on the display surface of the display panel. The reflective optical film includes a cholesteric liquid crystal layer and a first anti-glare layer. The first anti-glare layer is disposed between the display panel and the cholesteric liquid crystal layer.