Abstract:
An insole design method and an insole design system are provided, and the method includes: capturing an uncompressed free foot model by a depth camera and obtaining a free foot model three-dimensional image; capturing a pressed foot model stepped on a transparent pedal by the depth camera and obtaining a pressed foot model three-dimensional image; aligning the free foot model three-dimensional image with the pressed foot model three-dimensional image; calculating and obtaining a plantar deformation quantity according to the aligned free foot model three-dimensional image and the aligned pressed foot model three-dimensional image; and completing the designed insole according to a sole projection plane or a three-dimensional profile of the specific sole and the plantar deformation quantity.
Abstract:
A manufacturing method of a phase retardation film is provided. A flexible light-transmissive substrate is provided. The flexible light-transmissive substrate is aligned to form an alignment substrate. A birefringent material film is formed on the alignment substrate. A reaction-causing light is used to expose and induce a reaction on a first patterned region of the birefringent material film. A second patterned region of the birefringent material film is not exposed by the reaction-causing light. The second patterned region of the birefringent material film is removed. A manufacturing system configured to produce a phase retardation film is also provided.
Abstract:
A three-dimensional (3D) image dynamic correction evaluation and auxiliary design method for orthotics includes the following steps. 3D scanning information of the human body is obtained. A plurality of 2D images of the human body is obtained for identification, and the pixel values of the 2D images are calculated so as to synthesize an original 3D spine curve. The 2D images of the human body and the 3D scan information are synthesized. An image deformation prediction and correction method of body shape is used to generate a deformed body shape of the human body. A spine material properties and mechanical model prediction method is used to predict parameters of the position, direction and magnitude of the force applied by an orthotics to the human body according to the deformed body shape.
Abstract:
A three-dimensional modeling method and a three-dimensional modeling system are provided. The three-dimensional modeling method includes the steps of: performing a 360-degree three-dimensional scan on a measured object to obtain regional scan data corresponding to a plurality of different scan areas of the measured object; registering the regional scan data to form 360-degree three-dimensional scan data, wherein the 360-degree three-dimensional scan data include three-dimensional spatial coordinate data, curvature data and scan area data of the measured object; basing on the 360-degree three-dimensional scan data to search morphing model data from a database unit; a step of comparing the 360-degree three-dimensional scan data and performing registering and morphing processes on the morphing model data to construct compensated-template three-dimensional model data; and, basing on the compensated-template three-dimensional model data to fill at least one unknown area of the 360-degree three-dimensional scan data.