Abstract:
The present invention provides a molecular blended polymer that includes two or more types of polymers blended at the molecular level. At least one monomer is polymerized in the presence of two or more kinds of catalysts supported on a mesoporous molecular sieve having a pore size of 20 null to 500 null. The polymerization occurs in the pore of the mesoporous molecular sieve and is controlled at the molecular level. Thus, the polymer material is controlled extremely well and the function and physical properties of the polymer material are greatly enhanced.
Abstract:
The present invention provides an olefin/cycloolefin/alkylstyrene copolymer which is non-functionalized, functionalized, or grafted. By the functionalization of the benzylic protons of the alkylstyrene unit, the copolymer can be functionalized. The functionalized or grafted olefin/cycloolefin/alkylstyrene copolymer has good adhesion to a substrate and good compatibility with other polymers compared with the non-functionalized copolymer.
Abstract:
The present invention provides a catalyst composition and process for preparing olefin polymers. The catalyst composition includes a metallocene catalyst or a single-site catalyst, a mesoporous molecular sieve, and an aluminum-containing cocatalyst such as MAO. The cocatalyst is present in an amount such that the molar ratio of aluminum content in cocatalyst to the metal content in metallocene is from 0 to 200. When the catalyst composition is used for preparing polyolefins, the MAO amount can be decreased; thus, the production costs are greatly reduced.
Abstract:
The present invention provides a metallocene catalyst supported on a molecular seive having nulltubules-within-a-tubulenull morphology. When the metallocene catalyst is used for preparing polyolefin, the MAO amount can be decreased to an amount such that the molar ratio of Al/Zr is below 200. Thus, production costs are greatly reduced.