Abstract:
A mobile device is provided, which includes a camera unit, a sensor unit, a see-through display, and a processor. The camera unit takes an image of a finger and a surface. The sensor unit generates a sensor signal in response to a motion of the finger. The taking of the image and the generation of the sensor signal are synchronous. The see-through display displays a GUI on the surface. The processor is coupled to the camera unit, the sensor unit, and the see-through display. The processor uses both of the image and the sensor signal to detect a touch of the finger on the surface. The processor adjusts the GUI in response to the touch.
Abstract:
A wearable display and an adjusting method thereof are provided. The adjusting method comprises the following steps. A background image is provided. A central mark is displayed and overlapped with the background image. A first sight line passes through the central mark. A blind spot mark is displayed and overlapped with the background image. A second sight line passes through the blind spot mark. An included angle between the first sight line and the second sight line is substantially 14 to 16 degrees.
Abstract:
A method for playing a three-dimensional video is provided, which includes the following steps. A disparity velocity or a disparity acceleration for at least one continuous video in the three-dimensional video is calculated. A visual fatigue estimating value of a viewer is calculated according to the disparity velocity or the disparity acceleration. A subsequent playback of the three-dimensional video is controlled according to the visual fatigue estimating value.
Abstract:
A method for playing a three-dimensional video is provided, which includes the following steps. A disparity velocity or a disparity acceleration for at least one continuous video in the three-dimensional video is calculated. A visual fatigue estimating value of a viewer is calculated according to the disparity velocity or the disparity acceleration. A subsequent playback of the three-dimensional video is controlled according to the visual fatigue estimating value.