Abstract:
The present disclosure relates to a low-complexity transmitter architecture that drives phase modulators with digital signals to generate a pulse width modulated (PWM) signal that is transmitted by an antenna. In some embodiments, the system has a pre-processing element that generates first and second digital control signals from a digital baseband signal. A first phase modulation component introduces a first phase shift into a first local oscillator signal based upon the first control signal and generates a first digital signal corresponding to the first phase shift. A second phase modulation component introduces a second phase shift into the first local oscillator signal based upon the second control signal and generates a second digital signal corresponding to the second phase shift. A combination element is configured to combine the first and second digital output signals to generate an RF pulse width modulated (RF-PWM) signal.
Abstract:
An RF transmitter arrangement using analog pre-distortion is disclosed. The arrangement includes lower bandwidth circuitry, an analog pre-distorter, and a non-linear amplifier chain. The lower bandwidth circuitry is configured to generate an analog signal. The analog pre-distorter is configured to apply a non-linear distortion to the analog original signal based on a coupled feedback signal in order to generate an RF output signal. The non-linear amplifier chain is configured to amplify the RF output signal to generate a transmission signal relative to the analog original signal. The coupled feedback signal is derived from the transmission signal.
Abstract:
A non-linear pre-distortion engine maintaining constant peak power at its output is disclosed. The engine includes a compression estimator, a crest factor reduction processor, a digital pre-distorter and a power amplifier. The compression estimator is configured to generate a compression estimate based on an input signal and a feedback signal. The feedback signal is based on an RF output signal. The crest factor reduction processor is configured to reduce a crest factor of the input signal to generate a crest factor reduced signal based on the compression estimate. The digital pre-distorter is configured to apply a pre-distortion to the crest factor reduced signal after an initial phase and generate a pre-distorted signal based on pre-distortion parameters. The power amplifier is configured to amplify the pre-distorted signal to generate the RF output signal. The operation of the chain consisting of pre-distorter and power amplifier is substantially linear and the pre-distorter maintains constant peak power at its output, which eliminates unwanted avalanche or pre-distorter blow-up issues.
Abstract:
The present disclosure relates to a low-complexity transmitter architecture that drives phase modulators with digital signals to generate a pulse width modulated (PWM) signal that is transmitted by an antenna. In some embodiments, the system has a pre-processing element that generates first and second digital control signals from a digital baseband signal. A first phase modulation component introduces a first phase shift into a first local oscillator signal based upon the first control signal and generates a first digital signal corresponding to the first phase shift. A second phase modulation component introduces a second phase shift into the first local oscillator signal based upon the second control signal and generates a second digital signal corresponding to the second phase shift. A combination element is configured to combine the first and second digital output signals to generate an RF pulse width modulated (RF-PWM) signal.
Abstract:
One embodiment relates to a system which includes a pre-distortion unit, a power amplifier circuit, a power amplifier model, and a parameter estimation unit. The pre-distortion unit is configured to pre-distort an input signal based on a model parameter by directly computing the model inverse in an iterative fashion, thereby providing a pre-distorted signal. The power amplifier circuit is configured to amplify the pre-distorted signal. The power amplifier model is configured to model amplification of the pre-distorted signal by the power amplifier circuit based on the pre-distorted signal and the model parameter. Based on the pre-distorted signal and an error signal, the parameter estimation unit is configured to update the model parameter provided to the pre-distortion unit and the power amplifier model. The error signal represents a difference between an output signal from the power amplifier circuit and a modeled output signal from the power amplifier model.
Abstract:
A nonlinear distorter is configured to mitigate nonlinearity from a nonlinear component of a nonlinear system. The nonlinear distorter operates to model the nonlinearity as a function of a piecewise polynomial approximation applied to segments of a nonlinear function of the nonlinearity. The nonlinear distorter generates a model output that decreases the nonlinearity of the nonlinear component.
Abstract:
An RF transmitter arrangement using analog pre-distortion is disclosed. The arrangement includes lower bandwidth circuitry, an analog pre-distorter, and a non-linear amplifier chain. The lower bandwidth circuitry is configured to generate an analog signal. The analog pre-distorter is configured to apply a non-linear distortion to the analog original signal based on a coupled feedback signal in order to generate an RF output signal. The non-linear amplifier chain is configured to amplify the RF output signal to generate a transmission signal relative to the analog original signal. The coupled feedback signal is derived from the transmission signal.
Abstract:
A non-linear pre-distortion engine maintaining constant peak power at its output is disclosed. The engine includes a compression estimator, a crest factor reduction processor, a digital pre-distorter and a power amplifier. The compression estimator is configured to generate a compression estimate based on an input signal and a feedback signal. The feedback signal is based on an RF output signal. The crest factor reduction processor is configured to reduce a crest factor of the input signal to generate a crest factor reduced signal based on the compression estimate. The digital pre-distorter is configured to apply a pre-distortion to the crest factor reduced signal after an initial phase and generate a pre-distorted signal based on pre-distortion parameters. The power amplifier is configured to amplify the pre-distorted signal to generate the RF output signal. The operation of the chain consisting of pre-distorter and power amplifier is substantially linear and the pre-distorter maintains constant peak power at its output, which eliminates unwanted avalanche or pre-distorter blow-up issues.
Abstract:
A non-linear pre-distortion engine maintaining constant peak power at its output is disclosed. The engine includes a compression estimator, a crest factor reduction processor, a digital pre-distorter and a power amplifier. The compression estimator is configured to generate a compression estimate based on an input signal and a feedback signal. The feedback signal is based on an RF output signal. The crest factor reduction processor is configured to reduce a crest factor of the input signal to generate a crest factor reduced signal based on the compression estimate. The digital pre-distorter is configured to apply a pre-distortion to the crest factor reduced signal after an initial phase and generate a pre-distorted signal based on pre-distortion parameters. The power amplifier is configured to amplify the pre-distorted signal to generate the RF output signal. The operation of the chain consisting of pre-distorter and power amplifier is substantially linear and the pre-distorter maintains constant peak power at its output, which eliminates unwanted avalanche or pre-distorter blow-up issues.
Abstract:
A non-linear pre-distortion engine maintaining constant peak power at its output is disclosed. The engine includes a compression estimator, a crest factor reduction processor, a digital pre-distorter and a power amplifier. The compression estimator is configured to generate a compression estimate based on an input signal and a feedback signal. The feedback signal is based on an RF output signal. The crest factor reduction processor is configured to reduce a crest factor of the input signal to generate a crest factor reduced signal based on the compression estimate. The digital pre-distorter is configured to apply a pre-distortion to the crest factor reduced signal after an initial phase and generate a pre-distorted signal based on pre-distortion parameters. The power amplifier is configured to amplify the pre-distorted signal to generate the RF output signal. The operation of the chain consisting of pre-distorter and power amplifier is substantially linear and the pre-distorter maintains constant peak power at its output, which eliminates unwanted avalanche or pre-distorter blow-up issues.