Abstract:
A low color shift display panel includes a pixel array. The pixel array includes a first sub-pixel and a second sub-pixel. Each of the first sub-pixel and second sub-pixel respectively includes a data line, a gate line, a first transistor coupled to the data line and a first liquid crystal capacitor, a second transistor coupled to the data line and a second liquid crystal capacitor, and a third transistor coupled to a common voltage and the second transistor. The first sub-pixel has a first ratio which is the width-to-length ratio of the third transistor divided by the width-to-length ratio of the second transistor. The second sub-pixel has a second ratio which is the width-to-length ratio of the third transistor divided by the width-to-length ratio of the second transistor. The second ratio is smaller than the first ratio.
Abstract:
A liquid crystal (LCD) panel is provided. The LCD panel has a plurality of pixels. One of the pixels includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first electrode layer and a first alignment layer covering the first electrode layer. The second substrate includes a second electrode layer and a second alignment layer covering the second electrode layer. The second electrode layer has a first electrode pattern and a second electrode pattern. The first electrode pattern and the second electrode pattern are separated. The first electrode pattern has a convex edge. The second electrode pattern has a concave edge. The shape of the convex edge is complementary to the shape of the concave edge. The liquid crystal layer is disposed between the first substrate and the second substrate.
Abstract:
A display panel includes a liquid crystal layer positioned between first and second substrates. The first substrate comprises scan lines and data lines intersected to define pixel regions. Each pixel region comprises an electrode having two extending portions parallel to the extending direction of the data lines and one bending portion positioned between and connecting the two extending portions. A dark pattern including a first dark pattern and plural second dark patterns is generated when a light passes the pixel region. The first dark pattern is corresponding to the bending portion and parallel to the scan line. The second dark patterns correspond to the extending portions. The first dark pattern has the first and second widths in the first (half of all gray levels) and second gray levels (maximum gray level), respectively. A ratio of the first width to the second width is 2.1 to 3.0.
Abstract:
A display device includes: a substrate; a thin film transistor structure disposed on the substrate and including a gate electrode and a drain electrode; and a data line disposed on the substrate. Herein, from a top view, the data line is separated from the drain electrode, an edge of the gate electrode overlaps the drain electrode, the edge has two ends, and a first direction is parallel to a connection line of the two ends. In addition, from the top view, the drain electrode has a first distance and a second distance, the first distance is a maximum distance of the drain electrode not overlapping the gate electrode in the first direction, the second distance is a maximum distance of the drain electrode overlapping the gate electrode in the first direction, and the first distance is greater than the second distance.
Abstract:
A display device is disclosed, which includes: a first substrate; a plurality of scan lines and a plurality of data lines, wherein the scan lines intersects with the data lines, the scan and the data lines are disposed above the first substrate, and the scan lines extend along a first direction; a common electrode disposed above the first substrate; a second substrate; a display medium layer disposed between the first substrate and the second substrate, wherein the common electrode has a first part extending along the first direction, a second part corresponding to the data lines, and an end part, wherein the first part connects to the second part, the end part connects to the second part, a first angle included between the end part and the second part greater than 0 degree and less than 180 degrees. The end part overlaps partially with the data line adjacent thereto.
Abstract:
A display panel is disclosed, which comprises: a first substrate with plural sub-pixel units disposed thereon; a first photo-alignment layer disposed on the first substrate and having at least two different alignment directions corresponding to one sub-pixel unit; and plural metal pads respectively corresponding to the sub-pixel units. When light passes through each sub-pixel, a dark line pattern is exhibited, comprising: a first main dark line disposed at an interface between two different alignment directions of the first photo-alignment layer; and a metal pad pattern corresponding to the metal pad and the first main dark line. Herein, a distance difference between an edge of the first dark line and an edge of the metal pad pattern at the same side is not identical to that between another edge of the first dark line and another edge of the metal pad pattern at another same side.
Abstract:
A liquid-crystal display (LCD) includes a backlight unit, a display module and a barrier. The display module is disposed above the backlight unit and has plural pixels. Each of the pixels includes at least three differently-colored sub-pixels, and the differently-colored sub-pixels at adjacent columns are in a shifting arrangement. The barrier is disposed correspondingly to the display module, and has several slanted transparent slits. The transparent slits substantially expose at least parts of regions of the sub-pixels corresponding to the same viewing position. The sub-pixels are rectangular, rhombus or hexagonal in shape.
Abstract:
A display panel includes a first scan line and a second scan line adjacent to the first scan line disposed on the first substrate. A common electrode line is adjacent to the first scan line or the second scan line. The common electrode line has an enlarged portion, and an extending direction of the common electrode line is substantially the same as an extending direction of the first scan line. A first data line and a second data line adjacent to the first data line are disposed on the first substrate. In a direction perpendicular to the extending direction of the common electrode line, the enlarged portion has a maximum width, a part of the common electrode line overlapping the first data line has a maximum width, and the maximum width of the enlarged portion is greater than the maximum width of the first data line.
Abstract:
A low color shift display panel includes a pixel array. The pixel array includes a first sub-pixel and a second sub-pixel. Each of the first sub-pixel and second sub-pixel respectively includes a data line, a gate line, a first transistor coupled to the data line and a first liquid crystal capacitor, a second transistor coupled to the data line and a second liquid crystal capacitor, and a third transistor coupled to a common voltage and the second transistor. The first sub-pixel has a first ratio which is the width-to-length ratio of the third transistor divided by the width-to-length ratio of the second transistor. The second sub-pixel has a second ratio which is the width-to-length ratio of the third transistor divided by the width-to-length ratio of the second transistor. The second ratio is smaller than the first ratio.
Abstract:
A driving method applied in a display is provided. The display includes M scan lines, N data lines, M control lines and M×N pixels. M and N are natural numbers greater than 1. The driving method includes the following steps of: driving M scan lines in M scan periods respectively; providing a data voltage to each of the N data lines in each of the M scan periods; driving the first to the (M−K)th control lines in the (K+1)th to the Mth scan periods respectively to turn on the discharge switch in each of the pixels on the first to the (M−K)th control lines; and driving the second to the Kth control lines to trigger level shifting events in the first to the (K−1)th scan periods respectively, so that level shifting events are triggered on a scan and control lines in the first to the (K−1)th scan periods.