Method of reducing power dissipation in a clock distribution network for integrated circuit

    公开(公告)号:US10606306B2

    公开(公告)日:2020-03-31

    申请号:US16263705

    申请日:2019-01-31

    Abstract: A method and circuit are provided to reduce power consumption of high-speed clocks that are distributed across an integrated circuit (IC). Example implementations seek to reduce the amount of power dissipated in typical clock distribution networks by turning the combination of a multi-port electrical network and transmission line into a multi-resonant structure. In an implementation, the multi-port electrical network is coupled between first and second segments of the transmission line. The multi-port electrical network includes series and shunt reactive circuit elements, such as series inductive reactance and a shunt inductive susceptance, configured to produce first and second resonances that cooperate to create a bandpass response across clock distribution frequencies. This bandpass response is created by the multi-resonant structure, which is a combination of the transmission line and the multi-port electrical network. Various implementations are provided, including single-ended, differential, multi-section, multi-output, and point-to-multi-point implementations, each with an optional low-speed mode switch.

    Method of reducing power dissipation in a clock distribution network for integrated circuit

    公开(公告)号:US10234892B2

    公开(公告)日:2019-03-19

    申请号:US15910875

    申请日:2018-03-02

    Abstract: A method and circuit are provided to reduce power consumption of high-speed clocks that are distributed across an integrated circuit (IC). Example implementations seek to reduce the amount of power dissipated in typical clock distribution networks by turning the combination of a multi-port electrical network and transmission line into a multi-resonant structure. In an implementation, the multi-port electrical network is coupled between first and second segments of the transmission line. The multi-port electrical network includes series and shunt reactive circuit elements, such as series inductive reactance and a shunt inductive susceptance, configured to produce first and second resonances that cooperate to create a bandpass response across clock distribution frequencies. This bandpass response is created by the multi-resonant structure, which is a combination of the transmission line and the multi-port electrical network. Various implementations are provided, including single-ended, differential, multi-section, multi-output, and point-to-multi-point implementations, each with an optional low-speed mode switch.

    Clock distribution network for integrated circuit

    公开(公告)号:US09939841B1

    公开(公告)日:2018-04-10

    申请号:US15403041

    申请日:2017-01-10

    Abstract: A method and circuit are provided to reduce the power consumption of high-speed clocks that are distributed across an integrated circuit (IC). Example implementations seek to reduce the amount of power dissipated in typical clock distribution networks by turning the combination of a multi-port electrical network and transmission line into a multi-resonant structure. In an implementation, the multi-port electrical network is coupled between first and second segments of the transmission line. The multi-port electrical network includes a series inductive reactance and a shunt inductive susceptance configured to produce first and second resonances that cooperate to create a bandpass response across clock distribution frequencies. This bandpass response is created by the multi-resonant structure, which is a combination of the transmission line and the multi-port electrical network. Various implementations are provided, including single-ended, differential, multi-section, multi-output, and point-to-multi-point implementations, each with an optional low-speed mode switch.

Patent Agency Ranking