Abstract:
A nanostructured titania semiconductor material termed TSG-IMP having a predetermined crystal size is produced by a sol-gel method by adding a titanium alkoxide to an alcoholic solution, adding an acid to the alcoholic solution, subjecting the acidic solution to agitation under reflux conditions; stabilizing the medium and adding bidistilled water under reflux until gelation; subjecting the gel to aging until complete formation of the titania which is dried and calcined.
Abstract:
The present invention is directed to a nanostructured binary oxide TiO2—Al2O3 with high acidity and its synthesis process via the sol-gel method, hydrotreating and thermal activation. The nanostructured binary oxide TiO2—Al2O3 with high acidity consists basically of titanium oxide and aluminum oxide with the special characteristic of being obtained as nanostructures, in their nanocrystal-nanotube evolution, which provides special physicochemical properties such as high specific area, purity and phase stability, acidity stability and different types of active acid sites, in addition to the capacity to disperse and stabilize active metal particles with high activity and selectivity mainly in catalytic processes.
Abstract:
A semiconductor material basically consists of titanium oxide, with the special feature of being like nanostructures, which gives special physicochemical properties, with ability to disperse and stabilize metal particles with high activity and selectivity in catalytic processes mainly. The process of producing the semiconductor material includes adding a titanium alkoxide to an alcoholic solution, adding an acid to the alcoholic solution, controlling the pH from 1 to 5; subjecting the acidic solution to agitation and reflux conditions at 70 to 80° C.; stabilizing the medium and adding bidistilled water in a water/alkoxide molar ratio of 1-2/0.100-0.150, continuing with reflux until gelation; aging the gel for 1 to 24 hours for complete formation of the titania; drying the titania nanostructured at of 50 to 80° C. for about 1 to 24 hours, and subjecting the dried titania to a calcination step at 200 to 600° C. for 1 to 12 hours.
Abstract:
The present invention is directed to a process for obtaining a nanostructured titania catalyst with stabilized acidity through the sol-gel method and hydrotreatment and thermal activation; constituted basically by titanium oxide, specially characterized of being as nanostructures in its evolution nanocrystals-nanotubes-nanocrystals, that gives special physicochemical properties such as high specific area, purity and phases stability, acidity stability and different types of active acid sites, such as a capacity to disperse and stabilize metallic particles with high activity mainly in catalytic processes.