Abstract:
The present invention concerns a method for controlling a laser-based lighting system comprising a scanning mirror arrangement, arranged to be rotatable around two substantially orthogonal axes. The method comprises: (a) a sensor capturing a first image; (b) the sensor sending data representing at least part of the first image to an image generation unit; (c) the image generation unit generating a second image based on the data representing at least part of the first image, wherein the generated second image comprises information representing a feature region in the first image; (d) the image generation unit sending the second image to a projection system controller; and (e) the projection system controller, based on the received second image, controlling the operation of a projection system comprising a laser light source; and a scanning mirror arrangement for receiving the light radiated by the laser light source, and for reflecting the received light to a wavelength conversion element to project the second image. In the method the second image is streamed to the projection controller as an image pixel stream without first saving it in a memory.
Abstract:
Methods and apparatus to identify lenses of head-wearable apparatus are disclosed. Example glasses disclosed herein include a frame and an image generator coupled to the frame. A first lens is removably carriable by the frame. The first lens has a first identifier to provide a first code representative of a first optical characteristic of the first lens. The image generator is to project an image toward the first lens when the first lens is carried by the frame. A reader is to read the first code when the first lens is carried by the frame.
Abstract:
Disclosed herein are apparatus, devices, and methods to provide a modified-transmissivity zone on a projection surface used to generate a virtual image superimposed onto a real-world view. In particular, a variable-transmissivity material may be provided in the projection surface. The transmissivity of variable-transmissivity material may be modified responsive to application of a stimulus. A stimulus source may be configured to selectively apply a stimulus to the variable-transmissivity material to generate a discrete modified-transmissivity zone on the projection surface.
Abstract:
The present invention concerns a method for controlling a laser-based lighting system comprising a scanning mirror arrangement, arranged to be rotatable around two substantially orthogonal axes. The method comprises: (a) a sensor capturing a first image; (b) the sensor sending data representing at least part of the first image to an image generation unit; (c) the image generation unit generating a second image based on the data representing at least part of the first image, wherein the generated second image comprises information representing a feature region in the first image; (d) the image generation unit sending the second image to a projection system controller; and (e) the projection system controller, based on the received second image, controlling the operation of a projection system comprising a laser light source; and a scanning mirror arrangement for receiving the light radiated by the laser light source, and for reflecting the received light to a wavelength conversion element to project the second image. In the method the second image is streamed to the projection controller as an image pixel stream without first saving it in a memory.
Abstract:
Disclosed herein are apparatus, devices, and methods to provide a modified-transmissivity zone on a projection surface used to generate a virtual image superimposed onto a real-world view. In particular, a variable-transmissivity material may be provided in the projection surface. The transmissivity of variable-transmissivity material may be modified responsive to application of a stimulus. A stimulus source may be configured to selectively apply a stimulus to the variable-transmissivity material to generate a discrete modified-transmissivity zone on the projection surface.