Abstract:
This disclosure describes systems, and methods related to parallel transmission of high efficiency SIGNAL field in communication networks. A device may generate a high efficiency preamble in accordance with a high efficiency communication standard, the high efficiency preamble including, at least in part, one or more legacy SIGNAL fields, one or more high efficiency SIGNAL fields, and one or more channel training fields. The device may cause to send the one or more channel training fields to one or more first devices. The device may determine one or more spatial channel streams associated with at least one of the one or more first devices, the one or more spatial channel streams includes a first stream and a second stream. The device may partition the at least one of the one or more high efficiency SIGNAL fields into, at least in part, a common part and one or more user-specific parts, the one or more user-specific parts includes a first user-specific part and a second user-specific part. The device may cause to send at least one of the one or more user-specific parts using the one or more spatial channel streams.
Abstract:
A method comprises configuring a transmission mode for a user equipment (UE) based on user equipment specific reference signals (UE-RS) and configuring one or more precoding resource groups; and providing a dynamic indication to indicate which precoding resource group is valid for a physical downlink shared channel.
Abstract:
In various aspects, devices and methods for performing a handover in a MIMO system are described herein. According to at least one aspect, a wireless communication device is described to include one or more receivers that measures beams of a neighbor cell in response to a command of a MIMO communication system. In some aspects, the wireless communication device further includes one or more transmitters that reports information of the beams based on the measured beams to the massive MIMO communication system. The information is, in at least one aspect, incorporated in a Beam Specific-Neighbor Cell Relation (BS-NCR).
Abstract:
Various embodiments are generally directed to improved channel quality information feedback techniques. In one embodiment, for example, an evolved node B (eNB) may comprise a processor circuit, a communication component for execution by the processor circuit to receive a channel quality index for a physical downlink shared channel (PDSCH), the channel quality index associated with a defined reference resource, and a selection component for execution by the processor circuit to select a modulation and coding scheme (MCS) for transmission over the PDSCH of user equipment (UE) data in one or more resource blocks, the selection component to compensate for a difference between a cell-specific reference signal (CRS) overhead of the defined reference resource and a CRS overhead of the one or more resource blocks when selecting the MCS. Other embodiments are described and claimed.
Abstract:
A method comprises configuring a transmission mode for a user equipment (UE) based on user equipment specific reference signals (UE-RS) and configuring one or more precoding resource groups; and providing a dynamic indication to indicate which precoding resource group is valid for a physical downlink shared channel.