Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuity may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuity may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. A wireless transmit/receive unit (WTRU) may include circuitry configured to transmit subframes of radio frames using a physical uplink shared channel (PUSCH), where the subframes are divided into first and second sets. The circuitry may include a first power control loop utilized for the first set of subframes and a second power control loop utilized for the second set of subframes. The first power control loop may set transmission power levels for transmission over the PUSCH for the first set of subframes, and the second power control loop may set transmission power levels for transmission over the PUSCH for the second set of subframes. The circuitry may be configured with a first physical uplink control channel (PUCCH) for a first eNodeB and a second PUCCH for a second eNodeB to simultaneously communicate with the first and the second eNodeBs.
Abstract:
A resource block (RB)-based multicarrier modulation (MCM) transmitter and receiver structure for spectral agile systems are disclosed. The transmitter and the receiver are capable of sharing opportunistically available and non-contiguous channels with other users. The RB-MCM partitions the available spectrum, contiguous or non-contiguous, into multiple RBs (same or different sizes), applies a baseband MCM or single carrier modulation, or coded single carrier or multicarrier schemes in each RB with a type of spectral leakage reduction technique, and applies RB modulation for each RB to modulate the signal from baseband to the frequency band of that RB. At the receiver, the received signal may be filtered and RB demodulation may be applied to put each RB signal in baseband and a baseband multicarrier or single carrier or coded single carrier or coded multicarrier demodulation may be applied to each RB signal. Different RBs may use different modulation schemes.