Abstract:
Embodiments of the present invention provide systems and methods for allocating multiple resources. In one embodiment, a configured resource plan is used to construct a hierarchical tree. The system then identifies a set of unowned resources from the configured resource plan and sends the set of unowned resource to a share pool. The share pool is either a global or local pool and can be accessed by one or more consumers. In response to changes in workload demands, a set of unused resources are lent to a global or local pool.
Abstract:
Embodiments of the present invention provide systems and methods for allocating multiple resources. In one embodiment, a configured resource plan is used to construct a hierarchical tree. The system then identifies a set of unowned resources from the configured resource plan and sends the set of unowned resource to a share pool. The share pool is either a global or local pool and can be accessed by one or more consumers. In response to changes in workload demands, a set of unused resources are lent to a global or local pool.
Abstract:
Implementing a fair share of resources among one or more scheduling peers. Resource allocations are received for a plurality of scheduling peers. For each scheduling peer, a usage percentage difference is determined between their respective usage percentage and configured share ratio. For a first competing peer that is served more than a second competing peer, resource allocation is adjusted such that resources from the first competing peer are allocated to the second competing peer based, at least in part, on a time decay factor function that gives less weight to the usage percentage difference as an age of the usage percentage difference increases.
Abstract:
A system for managing a distributed service may include one or more compute nodes, with each compute node having one or more computer processors and a memory. The system may additionally include: a set of software services, the set of software services including the distributed service; a configuration manager to store configuration information about the distributed service, including a criteria for transitioning the distributed service from a first execution state to an initialization state, the criteria associating the execution first state with a second execution state of a first service of the set of software services; a set of measuring agents to obtain execution information from the set of software services; an execution system configured to: determine, based on the execution information, whether the criteria is satisfied; and transition, in response to determining that the criteria is satisfied, the distributed service from the first execution state to the initialization state.
Abstract:
A method to determine a hierarchical fair share of resources among one or more scheduling peers. The method determines a greatest fairness difference between the usage percentage difference of a most-served competing peer and that of a least-served competing peer. The method determines a greatest accumulated fairness difference between the accumulated usage percentage difference of the most-served competing peer and that of the least-served competing peer. The method adjusts a resource allocation such that resources from the most-served competing peer are allocated to the least-served competing peer if an adjustment condition is met, wherein the adjustment condition is based on one or both of i) the greatest fairness difference, and ii) whether the greatest accumulated fairness difference exceeds at least one threshold.
Abstract:
A method to determine a hierarchical fair share of resources among one or more scheduling peers. The method determines a greatest fairness difference between the usage percentage difference of a most-served competing peer and that of a least-served competing peer. The method determines a greatest accumulated fairness difference between the accumulated usage percentage difference of the most-served competing peer and that of the least-served competing peer. The method adjusts a resource allocation such that resources from the most-served competing peer are allocated to the least-served competing peer if an adjustment condition is met, wherein the adjustment condition is based on one or both of i) the greatest fairness difference, and ii) whether the greatest accumulated fairness difference exceeds at least one threshold.
Abstract:
A method to determine a hierarchical fair share of resources among one or more scheduling peers. The method determines a greatest fairness difference between the usage percentage difference of a most-served competing peer and that of a least-served competing peer. The method determines a greatest accumulated fairness difference between the accumulated usage percentage difference of the most-served competing peer and that of the least-served competing peer. The method adjusts a resource allocation such that resources from the most-served competing peer are allocated to the least-served competing peer if an adjustment condition is met, wherein the adjustment condition is based on one or both of i) the greatest fairness difference, and ii) whether the greatest accumulated fairness difference exceeds at least one threshold.
Abstract:
A method to determine a hierarchical fair share of resources among one or more scheduling peers. The method determines a greatest fairness difference between the usage percentage difference of a most-served competing peer and that of a least-served competing peer. The method determines a greatest accumulated fairness difference between the accumulated usage percentage difference of the most-served competing peer and that of the least-served competing peer. The method adjusts a resource allocation such that resources from the most-served competing peer are allocated to the least-served competing peer if an adjustment condition is met, wherein the adjustment condition is based on one or both of i) the greatest fairness difference, and ii) whether the greatest accumulated fairness difference exceeds at least one threshold.
Abstract:
Methods and arrangements for assembling tasks in a progressive queue. At least one job is received, each job comprising a dependee set of tasks and a depender set of at least one task. The dependee tasks are assembled in a progressive queue for execution, and the dependee tasks are executed. Other variants and embodiments are broadly contemplated herein.
Abstract:
A system for resolving a resource deadlock between processes. A shared data structure is maintained that includes process records of the processes. Process states and process priorities are defined for each of the processes. A respective state of the process is determined for each process based on the process states and process priorities of the process records maintained in the shared data structure. The respective state is used to allocate and deallocate resources to the process to mitigate and resolve the resource deadlock between the processes.