Abstract:
A parallel receiver interface includes a plurality of parallel data receivers, each receiver receiving input data. A clock receiver is configured to receive a forwarded clock. A phase interpolator has an input coupled to the output of the clock receiver and has an output coupled to each of the parallel receivers. Parallel clock delay elements are within each of the parallel data receivers, each clock delay element configured to provide varying amounts of clock phase adjustment. Inputs of a multiplexer circuit within each of the parallel data receivers are coupled to the outputs of each of the parallel clock delay elements within a respective parallel data receiver. An output of the multiplexer circuit is coupled to a data sampler within the respective parallel data receiver, the multiplexer circuit being configured to be controlled by a logic signal.
Abstract:
A multiply-accumulate device comprises a digital multiplication circuit and a mixed signal adder. The digital multiplication circuit is configured to input L m1-bit multipliers and L m2-bit multiplicands and configured to generate N one-bit multiplication outputs, each one-bit multiplication output corresponding to a result of a multiplication of one bit of one of the L m1-bit multipliers and one bit of one of the L m2-bit multiplicands. The mixed signal adder comprises one or more stages, at least one stage configured to input the N one-bit multiplication outputs, each stage comprising one or more inner product summation circuits; and a digital reduction stage coupled to an output of a last stage of the one or more stages and configured to generate an output of the multiply-accumulate device based on the L m1-bit multipliers and the L m2-bit multiplicands.
Abstract:
Techniques regarding a DSFQ logic family are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a dynamic single flux quantum logic circuit that has a self-resetting internal state and can be powered by direct current. Further, the self-resetting internal state can be characterized by two time constants.
Abstract:
Techniques regarding a DSFQ logic family are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a dynamic single flux quantum logic circuit that has a self-resetting internal state and can be powered by direct current. Further, the self-resetting internal state can be characterized by two time constants.
Abstract:
A device includes a logic circuit comprising a clockless single flux quantum logic gate which comprises a plurality of input ports, an output port, an output Josephson junction, and a plurality of dynamic storage loop circuits and isolation buffer circuits. The output Josephson junction is coupled to an output of each dynamic storage loop circuit and configured to drive the output port. Each isolation buffer circuit is coupled to a respective input port, and a respective dynamic storage loop circuit and configured to absorb a circulating current of an antifluxon which is injected into the respective dynamic storage loop circuit to prevent the antifluxon from being output from the respective input port, and to inject a fluxon into the respective dynamic storage loop circuit in response to a single flux quantum pulse applied to the respective input port, and annihilate an antifluxon present in the respective dynamic storage loop circuit.
Abstract:
A superconducting multi-stage synchronous logic circuit structure includes a first clocked logic gate, a second clocked logic gate, and an unclocked logic gate. Each of the logic gates includes Josephson junctions. The first clocked logic gate has a single first clocked logic gate output; the second clocked logic gate has a single second clocked logic gate output. The unclocked logic gate has a first input connected in electrical communication with the first clocked logic gate output and has a second input connected in electrical communication with the second clocked logic gate output, and has a single output. The Josephson junctions of the unclocked logic gate are arranged such that, in a single clock cycle that drives the first clocked logic gate and the second clocked logic gate, the unclocked logic gate produces a single signal in response to the inputs of the first and second clocked logic gates.
Abstract:
A multiply-accumulate device comprises a digital multiplication circuit and a mixed signal adder. The digital multiplication circuit is configured to input L m1-bit multipliers and L m2-bit multiplicands and configured to generate N one-bit multiplication outputs, each one-bit multiplication output corresponding to a result of a multiplication of one bit of one of the L m1-bit multipliers and one bit of one of the L m2-bit multiplicands. The mixed signal adder comprises one or more stages, at least one stage configured to input the N one-bit multiplication outputs, each stage comprising one or more inner product summation circuits; and a digital reduction stage coupled to an output of a last stage of the one or more stages and configured to generate an output of the multiply-accumulate device based on the L m1-bit multipliers and the L m2-bit multiplicands.
Abstract:
Techniques regarding a DSFQ logic family are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a dynamic single flux quantum logic circuit that has a self-resetting internal state and can be powered by direct current. Further, the self-resetting internal state can be characterized by two time constants.
Abstract:
A device includes a logic circuit comprising a clockless single flux quantum logic gate which comprises a plurality of input ports, an output port, an output Josephson junction, and a plurality of dynamic storage loop circuits and isolation buffer circuits. The output Josephson junction is coupled to an output of each dynamic storage loop circuit and configured to drive the output port. Each isolation buffer circuit is coupled to a respective input port, and a respective dynamic storage loop circuit and configured to absorb a circulating current of an antifluxon which is injected into the respective dynamic storage loop circuit to prevent the antifluxon from being output from the respective input port, and to inject a fluxon into the respective dynamic storage loop circuit in response to a single flux quantum pulse applied to the respective input port, and annihilate an antifluxon present in the respective dynamic storage loop circuit.
Abstract:
A device includes a logic circuit comprising a clockless single flux quantum logic gate which comprises a plurality of input ports, an output port, an output Josephson junction, and a plurality of dynamic storage loop circuits and isolation buffer circuits. The output Josephson junction is coupled to an output of each dynamic storage loop circuit and configured to drive the output port. Each isolation buffer circuit is coupled to a respective input port, and a respective dynamic storage loop circuit and configured to absorb a circulating current of an antifluxon which is injected into the respective dynamic storage loop circuit to prevent the antifluxon from being output from the respective input port, and to inject a fluxon into the respective dynamic storage loop circuit in response to a single flux quantum pulse applied to the respective input port, and annihilate an antifluxon present in the respective dynamic storage loop circuit.