摘要:
In a magnetic data processing device, a magnetic data input part sequentially receives magnetic data output from a three-dimensional (3D) magnetic sensor. A storage part stores a plurality of the magnetic data as a data set of statistical population. An acceleration data input part receives acceleration data output from a 3D acceleration sensor. A reliability determination part derives a reliability index that is a function of an angular difference between a direction of a line perpendicular to an approximate plane representing a distribution of the data set of the statistical population and a direction of acceleration represented by the acceleration data.
摘要:
A magnetic sensor control device has an input section, a selection section, a calculation section, and a setting section. The input section inputs a plurality of magnetic data each having 3 components sequentially output from a 3-dimensional (3D) magnetic sensor. The selection section selects 4 magnetic data satisfying a predetermined 4-point selection condition from the plurality of the input magnetic data. The calculation section calculates a center point equally distant from 4 points corresponding to the 4 selected magnetic data. The setting section sets 3 components representing the center point as an offset of the magnetic data.
摘要:
In a magnetic data processing device, an input part sequentially inputs magnetic data outputted from a two-dimensional or three-dimensional magnetic sensor. The magnetic data is two-dimensional or three-dimensional vector data that is a linear combination of a set of fundamental vectors. The magnetic data processing device stores a plurality of the inputted magnetic data as a data set of statistical population in order to update an old offset of the magnetic data with a new offset. An offset derivation part derives the new offset based on the old offset and the data set of statistical population under a constraint condition that the new offset be obtained as the sum of the old offset and a correction vector.
摘要:
In a navigation device, the position PGPS, the running speed V, and the running direction φ are detected based on the Global Positioning System (GPS), while the bearing θ is detected based on geomagnetism. The bearing θ is corrected using the difference δ=θ−φ so as to produce the corrected bearing θc. The present position PMAG is calculated based on the corrected bearing θc as well as the position PGPS and the running speed V which are previously detected. Thus, it is possible to precisely detect the present position PMAG without errors due to deviations between the running direction φ and the bearing θ.
摘要:
A magnetic sensor control device has an input section, a selection section, a calculation section, and a setting section. The input section inputs a plurality of magnetic data each having 3 components sequentially output from a 3-dimensional (3D) magnetic sensor. The selection section selects 4 magnetic data satisfying a predetermined 4-point selection condition from the plurality of the input magnetic data. The calculation section calculates a center point equally distant from 4 points corresponding to the 4 selected magnetic data. The setting section sets 3 components representing the center point as an offset of the magnetic data.
摘要:
In a geomagnetism measurement apparatus, a magnetic sensor detects magnetic data, and a storage unit stores the magnetic data sequentially output from the magnetic sensor. An ellipsoid generation unit calculates each ellipsoidal central point of first, second and third ellipsoids each of which has in the vicinity thereof a plurality of the magnetic data stored in the storage unit. An ellipsoidal central point decision unit decides whether or not a distance between respective ellipsoidal central points is equal to or less than a threshold value. A correction value generation unit calculates an ellipsoidal correction matrix for converting coordinates on an ellipsoid into coordinates on a sphere based on a coefficient matrix representing a shape of one of the first, second and third ellipsoids according to the decision result.
摘要:
In a magnetic data processing device, a magnetic data input part sequentially receives magnetic data output from a three-dimensional (3D) magnetic sensor. A storage part stores a plurality of the magnetic data as a data set of statistical population. An acceleration data input part receives acceleration data output from a 3D acceleration sensor. A reliability determination part derives a reliability index that is a function of an angular difference between a direction of a line perpendicular to an approximate plane representing a distribution of the data set of the statistical population and a direction of acceleration represented by the acceleration data.
摘要:
In a magnetic data processing device, an input part sequentially inputs magnetic data outputted from a two-dimensional or three-dimensional magnetic sensor. The magnetic data is two-dimensional or three-dimensional vector data that is a linear combination of a set of fundamental vectors. The magnetic data processing device stores a plurality of the inputted magnetic data as a data set of statistical population in order to update an old offset of the magnetic data with a new offset. An offset derivation part derives the new offset based on the old offset and the data set of statistical population under a constraint condition that the new offset be obtained as the sum of the old offset and a correction vector.
摘要:
In a magnetic data processing device, an input part sequentially receives magnetic data output from a magnetic sensor. A storage part stores a plurality of the magnetic data as a data set of statistical population. An index derivation part derives a distribution index of the data set of the statistical population. A reliability determination part determines whether or not reliability of the data set of the statistical population is acceptable based on the distribution index and a decision criterion. A decision criterion setting part increases strictness of the decision criterion when the reliability determination part determines that the reliability of the data set of the statistical population is acceptable, and decreases the strictness of the decision criterion when the reliability determination part determines that the reliability of the data set of the statistical population is unacceptable.
摘要:
In a magnetic data processing device, an input part sequentially receives magnetic data qi output from a magnetic sensor. A storage part sequentially stores the magnetic data received through the input part. An offset derivation part derives an offset according to a probabilistic method using a plurality of the magnetic data stored in the storage part as a statistical population. The offset derivation part assumes that an error Δpi contained in each of the magnetic data qi is a random variable vi following a probability distribution μ, and uses an expected value corresponding to the probability distribution μ for deriving the offset. Specifically, the offset derivation part calculates an index representing variance of distances from the offset to respective ones of true magnetic data that are obtained by subtracting each Δpi from each magnetic data qi of the statistical population, and derives the offset which minimizes the expected value of the calculated index.