摘要:
Methods and apparatus are presented for extending the protocol synchronization period between a PPP client and a PPP server, wherein the PPP server is located on a wireless communication device. In one aspect, the PPP server generates and sends an IPCP Configure-Nak message to the PPP client whenever the PPP client sends an IPCP Configure-Request message, wherein an arbitrary non-zero value is deliberately sent as the primary DNS address, the secondary DNS address, the primary WINS address, or the secondary WINS address is sent in the IPCP Configure-Nak message. The IP address is deliberately omitted from the IPCP Configure-Nak message.
摘要:
Methods and apparatus are presented for extending the protocol synchronization period between a PPP client and a PPP server, wherein the PPP server is located on a wireless communication device. In one aspect, the PPP server generates and sends an IPCP Configure-Nak message to the PPP client whenever the PPP client sends an IPCP Configure-Request message, wherein an arbitrary non-zero value is deliberately sent as the primary DNS address, the secondary DNS address, the primary WINS address, or the secondary WINS address is sent in the IPCP Configure-Nak message. The IP address is deliberately omitted from the IPCP Configure-Nak message.
摘要:
Methods and apparatus are presented for extending the protocol synchronization period between a PPP client and a PPP server, wherein the PPP server is located on a wireless communication device. In one aspect, the PPP server generates and sends an IPCP Configure-Nak message to the PPP client whenever the PPP client sends an IPCP Configure-Request message, wherein an arbitrary non-zero value is deliberately sent as the primary DNS address, the secondary DNS address, the primary WINS address, or the secondary WINS address is sent in the IPCP Configure-Nak message. The IP address is deliberately omitted from the IPCP Configure-Nak message.
摘要:
Systems and methodologies are described that facilitate enhanced data service functionality for data services operating in a multi-processor computing environment. As described herein, respective processors and/or other components can be utilized to form a Smart Peripheral Subsystem (SPS). As further described herein, the SPS can operate in association with a modem processor and an application processor at a mobile computing device in order to reduce loading at the application processor and improve memory usage efficiency. In the case of a mobile computing device sharing a network connection with a tethered computing device, the SPS can couple a modem interface associated with the mobile computing device and an interface through which the disparate computing device is tethered to the mobile computing device such that operations such as Layer 2 (L2) framing and/or de-framing, Network Address Translation (NAT), or the like can be offloaded to the SPS under various circumstances.
摘要:
A generic quality of service (QoS) model that is not dependent on network technology is used to support QoS for communication networks utilizing different network technologies. The generic QoS model may include a superset of all QoS parameters for all network technologies being supported, e.g., 3GPP and 3GPP2. An application at a device may specify QoS for a traffic flow based on the generic QoS parameters in the superset. The generic QoS parameters may be converted to QoS parameters that are specific to a serving network. The converted QoS parameters are exchanged with the serving network and are used while exchanging traffic with the serving network.
摘要:
A generic quality of service (QoS) model that is not dependent on network technology is used to support QoS for communication networks utilizing different network technologies. The generic QoS model may include a superset of all QoS parameters for all network technologies being supported, e.g., 3GPP and 3GPP2. An application at a device may specify QoS for a traffic flow based on the generic QoS parameters in the superset. The generic QoS parameters may be converted to QoS parameters that are specific to a serving network. The converted QoS parameters are exchanged with the serving network and are used while exchanging traffic with the serving network.
摘要:
Packet filtering is performed to detect for and discard malformed data packets that would be discarded by a wireless network if received from a wireless device. A cdma2000 network may restart a PPP session upon receiving (1) malformed data packets with source IPv4 addresses different from IPv4 addresses (if any) assigned to the wireless device or (2) malformed data packets with source IPv6 addresses having prefixes different from prefixes (if any) associated with the PPP session. The wireless device may receive data packets from a terminal equipment coupled to the wireless device and/or applications running at the wireless device. The wireless device may filter these data packets with packet filters to detect for malformed data packets with invalid IPv4 addresses, invalid IPv6 address prefixes, and so on. The wireless device discards malformed data packets and sends the remaining data packets to the wireless network.
摘要:
A method for generating privacy IP address includes pregenerating a first privacy address and generating a second privacy address when the first privacy address is allocated to an application. Addresses may be shared by applications or unique to a single application. A deprecation timer is started when an application binds to an allocated privacy address, now when the privacy address is generated. To minimize traffic flow disruptions a deprecated address is not deleted while the address remains in use. By pregenerating privacy addresses, an address can be promptly allocated to an application with out delays incurred by confirming that a new address is not a duplicate on the system. The method can be implicated on any device using privacy addresses, including mobile handset devices.
摘要:
A method and system that provides for efficient re-synchronization of a PPP link on a Um interface is provided. When the PPP link is connected, if an indication that the communications of the mobile station is associated with a new network server is detected, only the Um interface will undergo PPP configuration renegotiation. The method and system does not require the examination of all data packets for determining whether PPP configuration renegotiation is required.
摘要:
A system and method for transparent Mobile IP registration within PPP negotiation uses a mobile telephone to relay messages between terminal equipment and a Foreign Agent (FA). An IPCP configuration request message by the terminal equipment requesting the assignment of an IP address is modified by the mobile telephone to delete the IP address request option. Other configuration options are forwarded unchanged by the mobile telephone to the peer/network. The peer/network responds with an acknowledgement of the requested configuration options and flow control between the terminal and the MT is asserted to permit Mobile IP registration. In the course of Mobile IP registration, and IP address is assigned to the mobile unit by the FA. Upon completion of the Mobile IP registration, flow control between the mobile telephone and the terminal is deasserted and the IP address assigned during Mobile IP registration is provided to the terminal equipment. In addition, the previously requested options may also be acknowledged.