摘要:
The present invention relates to an ionic liquid-polymer gel membrane with improved gas permeability, and a preparation method thereof, and more specifically, to a membrane prepared to allow an ionic liquid to be dispersed in a polymer gel, thereby improving gas permeability. Particularly, the present invention relates to an ionic liquid-polymer gel membrane wherein membrane selectivity and permeability exceed an upper bound by increasing the amount of dispersed ionic liquid, and a preparation method thereof. The preparation method of the membrane for separating a specific gas from a mixture gas according to the present invention comprises the following steps of: mixing a polymer, an ionic liquid and PC as a solvent to prepare a mixture solution; and drying the mixture solution to remove the solvent from the mixture solution. In addition, the polymer is polyvinylidene fluoride-hexafluoropropyl copolymer (PVdF-HFP), and the ionic liquid is 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]).
摘要:
The present invention relates to an ionic liquid-polymer gel membrane with improved gas permeability, and a preparation method thereof, and more specifically, to a membrane prepared to allow an ionic liquid to be dispersed in a polymer gel, thereby improving gas permeability. Particularly, the present invention relates to an ionic liquid-polymer gel membrane wherein membrane selectivity and permeability exceed an upper bound by increasing the amount of dispersed ionic liquid, and a preparation method thereof. The preparation method of the membrane for separating a specific gas from a mixture gas according to the present invention comprises the following steps of: mixing a polymer, an ionic liquid and PC as a solvent to prepare a mixture solution; and drying the mixture solution to remove the solvent from the mixture solution. In addition, the polymer is polyvinylidene fluoride-hexafluoropropyl copolymer (PVdF-HFP), and the ionic liquid is 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]).
摘要:
Provided is an absorbent for capturing carbon dioxide. The absorbent may include an amino acid with multiple amine groups and an alkali-metal hydroxide mixed with the amino acid and thus, may increase an absorption capacity for carbon dioxide. When a sterically hindered effect is induced to the amino acid with multiple amine groups, the absorption capacity for carbon dioxide may increase and heat of absorption reaction may decrease and thus, energy consumed for regeneration of an absorbent may be reduced. The absorbent for capturing carbon dioxide may include amino acid with multiple amine groups and the metal hydroxide, and may provide a functional group around the amine groups to cause an sterically hindered effect and thus, the absorption capacity for carbon dioxide and an carbon dioxide absorption rate may increase, and the capital cost for a carbon dioxide capturing process and an operating cost may be significantly reduced.
摘要:
Provided is an absorbent for capturing carbon dioxide. The absorbent may include an amino acid with multiple amine groups and an alkali-metal hydroxide mixed with the amino acid and thus, may increase an absorption capacity for carbon dioxide. When a sterically hindered effect is induced to the amino acid with multiple amine groups, the absorption capacity for carbon dioxide may increase and heat of absorption reaction may decrease and thus, energy consumed for regeneration of an absorbent may be reduced. The absorbent for capturing carbon dioxide may include amino acid with multiple amine groups and the metal hydroxide, and may provide a functional group around the amine groups to cause an sterically hindered effect and thus, the absorption capacity for carbon dioxide and an carbon dioxide absorption rate may increase, and the capital cost for a carbon dioxide capturing process and an operating cost may be significantly reduced.
摘要:
Disclosed are a multi water-gas shift membrane reactor for producing high-concentration hydrogen and a method for producing hydrogen using the same. More specifically, disclosed are a multi water-gas shift membrane reactor wherein high-concentration carbon monoxide, obtained by dry-gasification performed by reacting dry bituminous coal with water and oxygen, reacts with water gas in the presence of catalysts in a single reactor, to produce hydrogen and carbon dioxide and separate highly pure hydrogen and carbon dioxide through a separation membrane arranged in a low region, and a method for producing hydrogen.