摘要:
A cathode catalyst of the present invention includes an A-B-Ch compound, where A is a metal selected from the group consisting of Pt, Ru, Rh, and combinations thereof, B is a metal selected from the group consisting of Bi, Pb, Tl, Sb, Sn, In, Ga, Ge, and combinations thereof, and Ch is an element selected from the group consisting of S, Se, Te, and combinations thereof. The cathode catalyst may be used in a membrane-electrode assembly and a fuel cell.
摘要:
A cathode catalyst for a fuel cell includes an Ru—Se alloy having an average particle size of less than or equal to 6 nm. The Ru—Se alloy is amorphous catalyst. A membrane electrode assembly and a fuel cell system include the cathode catalyst. A catalyst for a fuel cell is prepared by drying a ruthenium solution including a water-soluble ruthenium precursor to obtain a first dried product; subjecting the first dried product to a first heat-treatment to obtain a heat-treated product; adding an Se solution including a water-soluble Se precursor to the heat-treated product to obtain a mixture; drying the mixture to obtain a second dried product including ruthenium and Se; and subjecting the second dried product to second heat-treatment.
摘要:
The cathode catalyst includes a zeolite-containing carrier, and a ruthenium (Ru)-M-tellurium (Te) alloy supported on the carrier, where M is selected from the group consisting of tungsten (W), molybdenum (Mo), and combinations thereof. The cathode catalyst has a high activity and selectivity for a reduction reaction of an oxidant, and is highly stable under an acidic atmosphere thereby being capable of improving performances of a membrane-electrode assembly and fuel cell system.
摘要:
A stack for a direct oxidation fuel cell and a direct oxidation fuel cell system including the stack are provided. The stack for a direct oxidation fuel cell includes at least one membrane-electrode assembly including an anode and a cathode facing each other and a polymer electrolyte membrane interposed between the anode and cathode, and separators disposed at both sides of the membrane-electrode assembly. The cathode includes a platinum-based catalyst and a selective catalyst that can be active for reduction of an oxidant. The stack for a direct oxidation fuel cell of the present invention can have improved performance by including the platinum-based catalyst and the selective catalyst in a cathode catalyst layer, thereby minimizing catalyst poisoning due to a crossed-over fuel and maximizing catalyst activity for reduction of an oxidant.
摘要:
The cathode catalyst for a fuel cell of the present invention includes M—Co—Ch where M is at least one metal selected from the group consisting of Ru, Rh, Pd, Os, Ir, Pt, and combinations thereof, and Ch is at least one element selected from the group consisting of S, Se, Te, and combinations thereof. The cathode catalyst of the present invention has high activity and excellent selectivity for reduction of an oxidant, and is capable of improving performance of a membrane-electrode assembly for a fuel cell, a fuel cell system including the same, and a membrane-electrode assembly including the same.
摘要:
The present invention relates to a cathode catalyst for a fuel cell, and a membrane-electrode assembly for a fuel cell and a fuel cell system comprising the same. The cathode catalyst for a fuel cell includes A-B-S, where A is selected from the group consisting of Ru, Rh, and combinations thereof, the B is selected from the group consisting of W, Mo, and combinations thereof, and the A-B-S is shaped as a nanowire. Since the cathode catalyst for a fuel cell of the present invention has excellent activity and selectivity for reduction of an oxidant, it can improve performance of a membrane-electrode assembly and a fuel cell system including the same.
摘要:
A membrane-electrode assembly for a mixed reactant fuel cell and a mixed reactant fuel cell system including the same. In one embodiment of the present invention, a membrane-electrode assembly for a mixed reactant fuel cell includes an anode catalyst layer, a cathode catalyst layer, a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer, an electrode substrate disposed on at least one of the anode catalyst layer or the cathode catalyst layer, and an oxidant supply path penetrating the polymer electrolyte membrane, the anode catalyst layer, the cathode catalyst layer, and the electrode substrate and adapted to supply an oxidant.
摘要:
A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.
摘要:
The polymer electrolyte membrane of the present invention includes polymers having a fluoroalkyl group and a proton conductive group. The present invention also provides a membrane-electrode assembly, a fuel cell system including the polymer electrolyte membrane, and a method of making the polymer electrolyte membrane by a chemical grafting method. The amount of the proton conductive groups in the polymer electrolyte membrane can be controlled, the membrane thickness can be easily controlled, adherence between a polymer electrolyte membrane and an electrode is improved due to the fluoroalkyl of the polymer, and long-term stability of a membrane-electrode assembly is improved.
摘要:
The present invention relates to a direct oxidation fuel cell system including at least one electricity generating element including at least one membrane-electrode assembly which includes an anode and a cathode on opposite sides of a polymer electrolyte membrane, and a separator. The direct oxidation fuel cell generates electricity through an electrochemical reaction of a fuel and an oxidant. An oxidant supplier supplies the electricity generating element with the oxidant. A fuel supplier supplies the anode with a combination of fuel and hydrogen to provide improved power output.