Abstract:
Fume evacuation systems are disclosed. An example fume evacuation system includes: an air handling system for drawing components comprising air, fumes, smoke, or particulate, or a combination thereof from a metal working application; an air conduit couple to the air handling system for conveying the components from the metal working application towards the air handling system; and a hood coupled to the air conduit and configured to be positioned at the metal working application, the hood comprising a structure defining a circuitous path for particulate that, in operation, allows the airborne components to pass through the hood to the air conduit but causes particulate to cool the components
Abstract:
A component extraction system utilized a base unit that produces a positive pressure air stream and that draws a negative pressure air stream into the base unit. To enhance performance, and reduce head requirements and power consumption, a number of bends in the flow paths is minimized in the base unit.
Abstract:
Welding power supplies and user interfaces for welding power supplies are disclosed. An example interface includes control circuitry configured to: in response to inputs from first, second, third, and fourth buttons, select a welding process, electrode wire type, electrode wire size, and shielding gas composition from respective sequences; select a welding program based on the selections; in response to input from the first input device, select a wire feed speed; based on the selected wire feed speed, automatically select a voltage based on a relationship between the wire feed speed and the voltage, the relationship based on at least one of the selected welding process, the electrode wire type, the electrode wire size, or the shielding gas composition; and control at least one of an output of power conversion circuitry based on the selected voltage, or a feed speed of a wire feeder based on the selected wire feed speed.
Abstract:
A fume evacuation system is designed to remove smoke, fumes, and particulate from a metal-working or other application. The system may include a cart-type base unit or may be incorporated into a fixed or semi-fixed installation that uses suction to draw air (e.g., containing smoke, fumes, and particulate) away from the metal-working application. The fume evacuation system includes a hood that creates an arduous flow path and varying velocity profile, which cools and separates any particulate matter in the suctioned air. The arduous flow path may include multiple sharp turns created by an inner deflector component and an inlet tube. The inlet tube may further contain baffles to cool particulates from the suctioned air.
Abstract:
A extraction system is designed for metal working and other applications. The system may comprise a cart-type base or may be incorporated into a fixed or semi-fixed installation. A blower delivers a positive pressure airflow to a hood that creates an air region by directing the air through an annular space between inner and outer shrouds, impacting the air against a single generally perpendicular flange. Return air from the operation may be mixed with fresh air, both of which may be filtered, to supply the positive pressure air. Both air streams to and from the hood may be adjusted to optimize operation. Adjustments may be made at the base unit or remotely.
Abstract:
An extraction system is designed for metal working and other applications. The system may comprise a blower that delivers a positive pressure airflow to a hood that creates an air region for removal of airborne components from a work area. The blower is driven by a three-phase motor in a portable base unit that may be plugged into a source of three-phase power. A rotational direction reversing switch is provided between the motor and a three-phase plug to permit reversal of the rotational direction of the motor when the motor is determined not to rotation in the intended direction when the plug is connected to a receptacle. The switch may be manual or automatic.
Abstract:
An airborne component extractor provides a positive pressure air stream to a work area and draws a negative pressure air stream from the work area. Conduits conduct both air streams. A movable cart-type base unit or a permanent installation may provide for the air streams. Sizes and operational parameters are selected to provide good component removal, reduce head losses, and reduce power requirements.
Abstract:
A component extractor system includes a source of a positive pressure air stream and a source of a negative pressure air stream. Conduits convey the air streams to and from a work area where one or more nozzles create a capture region and draw airborne components into the system. The system is optimized in terms of flow ratios, dimensions of the conduits and elements of the nozzle, and so forth.
Abstract:
Fume evacuation systems are disclosed. An example fume evacuation system includes: an air handling system for drawing components comprising air, fumes, smoke, or particulate, or a combination thereof from a metal working application; an air conduit couple to the air handling system for conveying the components from the metal working application towards the air handling system; and a hood coupled to the air conduit and configured to be positioned at the metal working application, the hood comprising a structure defining a circuitous path for particulate that, in operation, allows the airborne components to pass through the hood to the air conduit but causes particulate to cool the components.
Abstract:
An extraction system is designed for metal working and other applications. The system may include a blower that delivers a positive pressure airflow to a hood that creates an air region for removal of airborne components from a work area. The blower is driven by a three-phase motor in a portable base unit that may be plugged into a source of three-phase power. A rotational direction reversing switch is provided between the motor and a three-phase plug to permit reversal of the rotational direction of the motor when the motor is determined not to rotation in the intended direction when the plug is connected to a receptacle. The switch may be manual or automatic.