Abstract:
A welding system monitors the changes in the power output provided from a power supply to a device to determine the inductance of power cables between the power supply and the device. The device may determine the inductance of the power cables based at least in part on a delay in a threshold change in voltage to the device after a change in the current demand of the device, a delay in the initialization of the change in the current demand of the device after an initialization signal, a rate of change of the current drawn by the device, or a relative comparison of the voltage to the device and the current drawn by the device, or any combination thereof. If the inductance of the power cables is greater than a threshold inductance, the device may signal the user, disable operation of the device, or any combination thereof
Abstract:
A weld travel speed sensing system includes at least one sound sensor configured to sense a sound generated to allow determination of a position of a welding torch. The weld travel speed sensing system is configured to determine a position of a point on the welding torch based on the sensed sound.
Abstract:
A welding system monitors the changes in the power output provided from a power supply to a device to determine the inductance of power cables between the power supply and the device. The device may determine the inductance of the power cables based at least in part on a delay in a threshold change in voltage to the device after a change in the current demand of the device, a delay in the initialization of the change in the current demand of the device after an initialization signal, a rate of change of the current drawn by the device, or a relative comparison of the voltage to the device and the current drawn by the device, or any combination thereof. If the inductance of the power cables is greater than a threshold inductance, the device may signal the user, disable operation of the device, or any combination thereof.
Abstract:
A weld travel speed sensing system includes at least one sound sensor configured to sense a sound generated to allow determination of a position of a welding torch. The weld travel speed sensing system is configured to determine a position of a point on the welding torch based on the sensed sound.
Abstract:
A travel speed sensing system includes an optical sensor configured to be coupled to a welding torch. The optical sensor is configured to sense light incident on the optical sensor, and the travel speed sensing system is configured to determine a travel speed of the welding torch, a direction of the welding torch, or both, based on the sensed light.
Abstract:
A main controller may be used to provide integrated, centralized, and optimized handling of telematics data in welding arrangements. The main controller may receive from other components of a welding arrangement, telematics data, and may apply at least some processing to the telematics data, to enable use of the telematics data by a remote entity. The telematics data may comprises data relating to an engine used in driving one or more components of the welding arrangement, data relating to one or more components of the welding arrangement, and/or data relating to welding operations performed via the welding arrangement. The processing of telematics data may comprise formatting data in accordance with a single standard format, digitizing analog data, and/or processing data for communication to the remote entity. The main controller may provide telematics client and/or host node functions, such as based on the controller area network (CANBus) protocol.
Abstract:
A welding system includes a first sensor associated with a welding helmet and configured to sense a parameter indicative of a position of a welding torch relative to the welding helmet. The travel speed sensing system also includes a processing system communicatively coupled to the first sensor and configured to determine a position of the welding torch relative to a workpiece based on the sensed first parameter.
Abstract:
A travel speed sensing system includes an optical sensor configured to be coupled to a welding torch. The optical sensor is configured to sense light incident on the optical sensor, and the travel speed sensing system is configured to determine a travel speed of the welding torch, a direction of the welding torch, or both, based on the sensed light.
Abstract:
A travel speed sensing system includes an optical sensor configured to be coupled to a welding torch. The optical sensor is configured to sense light incident on the optical sensor, and the travel speed sensing system is configured to determine a travel speed of the welding torch, a direction of the welding torch, or both, based on the sensed light.
Abstract:
A travel speed sensing system includes an optical sensor configured to be coupled to a welding torch. The optical sensor is configured to sense light incident on the optical sensor, and the travel speed sensing system is configured to determine a travel speed of the welding torch, a direction of the welding torch, or both, based on the sensed light.