Abstract:
A digital media player device includes, without limitation, a processor and a communication module coupled to the processor and configured to support data communication with a digital media place-shifting device. The processor and the communication module cooperate to attempt to establish data communication with the digital media place-shifting device in accordance with a connection mode sequence that identifies a plurality of different data communication modes supported by the digital media player device, until one of the plurality of different data communication modes can be used to initiate a data communication session between the digital media player device and the digital media place-shifting device. The processor and the communication module also cooperate to perform data communication with the digital media place-shifting device, using the one of the plurality of different data communication modes.
Abstract:
A method of establishing a connection traversing at least one network address translation (NAT) gateway is presented. In the method, a bind request is sent from a source device to a mediation element via a NAT gateway. A bind response associated with the bind request is received. A connection request is sent to the mediation element. The mediation element causes the connection request to be sent to a destination device. A connection response associated with the connection request is received. A hello message is sent to a predicted destination address. The predicted destination address is based on an address received in the connection response. A data connection is established between the source device and the destination device using the predicted destination address.
Abstract:
A method of establishing a connection traversing at least one network address translation (NAT) gateway is presented. In the method, a bind request is sent from a source device to a mediation element via a NAT gateway. A bind response associated with the bind request is received. A connection request is sent to the mediation element. The mediation element causes the connection request to be sent to a destination device. A connection response associated with the connection request is received. A hello message is sent to a predicted destination address. The predicted destination address is based on an address received in the connection response. A data connection is established between the source device and the destination device using the predicted destination address.
Abstract:
Described herein are techniques for managing content stored on a distributed network. Content is initially placed onto the network and populated across one or more nodes. The content is distributed in association with decay parameters that define a lifetime for the population of the content on the network. Various communication nodes of the distributed network are configured to process the content decay parameters to determine whether to delete the content during subsequent time periods.
Abstract:
A digital media player device includes, without limitation, a processor and a communication module coupled to the processor and configured to support data communication with a digital media place-shifting device. The processor and the communication module cooperate to attempt to establish data communication with the digital media place-shifting device in accordance with a connection mode sequence that identifies a plurality of different data communication modes supported by the digital media player device, until one of the plurality of different data communication modes can be used to initiate a data communication session between the digital media player device and the digital media place-shifting device. The processor and the communication module also cooperate to perform data communication with the digital media place-shifting device, using the one of the plurality of different data communication modes.
Abstract:
Described herein are techniques for managing content stored on a distributed network. Content is initially placed onto the network and populated across one or more nodes. The content is distributed in association with decay parameters that define a lifetime for the population of the content on the network. Various communication nodes of the distributed network are configured to process the content decay parameters to determine whether to delete the content during subsequent time periods.
Abstract:
A method of establishing a connection traversing at least one network address translation (NAT) gateway is presented. In the method, a bind request is sent from a source device to a mediation element via a NAT gateway. A bind response associated with the bind request is received. A connection request is sent to the mediation element. The mediation element causes the connection request to be sent to a destination device. A connection response associated with the connection request is received. A hello message is sent to a predicted destination address. The predicted destination address is based on an address received in the connection response. A data connection is established between the source device and the destination device using the predicted destination address.
Abstract:
A method of establishing a connection traversing at least one network address translation (NAT) gateway is presented. In the method, a bind request is sent from a source device to a mediation element via a NAT gateway. A bind response associated with the bind request is received. A connection request is sent to the mediation element. The mediation element causes the connection request to be sent to a destination device. A connection response associated with the connection request is received. A hello message is sent to a predicted destination address. The predicted destination address is based on an address received in the connection response. A data connection is established between the source device and the destination device using the predicted destination address.
Abstract:
A set-top box (STB), digital video recorder (DVR), video player or other host device receives and interacts with a transcode module to provide enhanced transcoding capabilities that may be useful in placeshifting or other applications. The transcode module includes a host interface that couples to and communicates with the host device. The transcode module also includes a processor that receives an encrypted media stream from the host device via the bus interface, decrypts the encrypted media stream, transcodes the encrypted media stream to a different format, re-encrypts the transcoded stream, and provides the re-encrypted media stream to the host device via the host interface. The transcoded media content may be placeshifted to a remote player, stored at the host, or used for any other purpose.
Abstract:
A set-top box (STB), digital video recorder (DVR), video player or other host device receives and interacts with a transcode module to provide enhanced transcoding capabilities that may be useful in placeshifting or other applications. The transcode module includes a host interface that couples to and communicates with the host device. The transcode module also includes a processor that receives an encrypted media stream from the host device via the bus interface, decrypts the encrypted media stream, transcodes the encrypted media stream to a different format, re-encrypts the transcoded stream, and provides the re-encrypted media stream to the host device via the host interface. The transcoded media content may be placeshifted to a remote player, stored at the host, or used for any other purpose.