Abstract:
A semiconductor arrangement includes a semiconductor body with a first active region, a second active region and an isolation region arranged between the first and the second active regions. At least one source region and at least one body region of a first transistor are integrated in the first active region. At least one source region and at least one body region of a second transistor are integrated in the second active region. Source and body regions of a third transistor are integrated in the second active region. The second transistor and the third transistor have a common source electrode. The first transistor, the second transistor and the third transistor have a common drain electrode.
Abstract:
A converter may include a transformer; a first circuit arrangement coupled to a first transformer side; a second circuit arrangement coupled to a second transformer side, wherein the second circuit arrangement is configured to provide an output voltage; a first coupler configured to provide information about the output voltage to the first circuit arrangement; wherein the first circuit arrangement is configured to determine a state of the secondary side based on the received information about the output voltage, and to generate a switch control signal dependent on the determined state; a switch circuit arranged on the second side; and a second coupler configured to provide a switch control signal from the first circuit arrangement to the switch circuit; wherein the switch circuit is coupled to the first circuit arrangement to provide a first circuit arrangement control signal to the first circuit arrangement depending on the switch control signal.
Abstract:
In various embodiments a method for determining a demagnetization zero current time, at which a transformer is substantially demagnetized, for a switched mode power supply comprising a transformer is provided, wherein the method may include: applying a first current through a winding of one side of the transformer; interrupting the current flow of the first current; measuring a time at which a voltage across a winding of another side of the transformer becomes substantially zero; and determining the demagnetization zero current time using the measured time.
Abstract:
In various embodiments a method is provided for determining a demagnetization zero current time for a switched mode power supply having a transformer, a first side and a second side being galvanically separated from each other and a switched mode power supply controller, the method including: determining a first voltage being applied to one side of the transformer; determining a second voltage provided at the other side of the transformer; determining a time the first voltage is provided to a winding of the transformer; and determining, by a circuit located on the same side of the transformer as the switched mode power supply controller, the demagnetization zero current time using the determined first voltage, the determined second voltage and the determined time.
Abstract:
In various embodiments a method for determining a demagnetization zero current time, at which a transformer is substantially demagnetized, for a switched mode power supply comprising a transformer is provided, wherein the method may include: applying a first current through a winding of one side of the transformer; interrupting the current flow of the first current; measuring a time at which a voltage across a winding of another side of the transformer becomes substantially zero; and determining the demagnetization zero current time using the measured time.
Abstract:
In various embodiments a method is provided for determining a demagnetization zero current time for a switched mode power supply having a transformer, a first side and a second side being galvanically separated from each other and a switched mode power supply controller, the method including: determining a first voltage being applied to one side of the transformer; determining a second voltage provided at the other side of the transformer; determining a time the first voltage is provided to a winding of the transformer; and determining, by a circuit located on the same side of the transformer as the switched mode power supply controller, the demagnetization zero current time using the determined first voltage, the determined second voltage and the determined time.
Abstract:
A converter may include a transformer; a first circuit arrangement coupled to a first transformer side; a second circuit arrangement coupled to a second transformer side, wherein the second circuit arrangement is configured to provide an output voltage; a first coupler configured to provide information about the output voltage to the first circuit arrangement; wherein the first circuit arrangement is configured to determine a state of the secondary side based on the received information about the output voltage, and to generate a switch control signal dependent on the determined state; a switch circuit arranged on the second side; and a second coupler configured to provide a switch control signal from the first circuit arrangement to the switch circuit; wherein the switch circuit is coupled to the first circuit arrangement to provide a first circuit arrangement control signal to the first circuit arrangement depending on the switch control signal.
Abstract:
A semiconductor arrangement includes a semiconductor body with a first active region, a second active region and an isolation region arranged between the first and the second active regions. At least one source region and at least one body region of a first transistor are integrated in the first active region. At least one source region and at least one body region of a second transistor are integrated in the second active region. Source and body regions of a third transistor are integrated in the second active region. The second transistor and the third transistor have a common source electrode. The first transistor, the second transistor and the third transistor have a common drain electrode.