Abstract:
A pixel structure is provided. The pixel structure includes a substrate and an insulating layer on the substrate. The insulating layer includes a plane region. An electrode pattern is disposed on the insulating layer and located on the plane region. The electrode pattern includes a bottom layer and a plurality of protrusions connected to the bottom layer. The protrusions protrude from the top surface of the bottom layer towards a direction away from the substrate. The bottom layer covers the plane region. A plurality of slits are formed between the protrusions so as to expose portions of the bottom layer. A liquid-crystal display having the pixel structure is also provided.
Abstract:
A display panel is disclosed, comprising: a first electrode comprising a first trunk electrode and a second trunk electrode and a second electrode comprising a third trunk electrode and a fourth trunk electrode formed thereon, wherein when light passes through the display panel, the first and second trunk electrode respectively correspond to first and second dark lines crossing to each other to form a first cross site, the third and fourth trunk electrode respectively correspond to third and fourth dark lines crossing to each other to form a second cross site, the first and third dark lines respectively comprise first and second arc portions at the first and second cross sites near to a first scan line, and a first concave side of the first arc portion and the second concave side of the second arc portion face to sides opposite to each other.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate spaced apart from the first substrate; and a plurality of liquid crystal molecules disposed between the first and second substrates. The first substrate includes a transparent substrate, an insulator layer formed on a surface of the transparent substrate and formed with a plurality of grooves, and a pixel electrode formed on a surface of the insulator layer and formed with a plurality of electrode slits.
Abstract:
A liquid crystal display device includes: a first substrate; a second substrate spaced apart from the first substrate; and a plurality of liquid crystal molecules disposed between the first and second substrates. The first substrate includes a transparent substrate, an insulator layer formed on a surface of the transparent substrate and formed with a plurality of grooves, and a pixel electrode formed on a surface of the insulator layer and formed with a plurality of electrode slits.
Abstract:
A display panel including a first polarizer, a second polarizer, a first substrate, a second substrate, a liquid crystal layer, and a pixel array is provided. The pixel array disposed on the first substrate includes a pixel area wherein a pixel electrode is disposed. The pixel electrode includes a first main electrode, a second main electrode, which substantially perpendicularly intersecting for defining a first domain, a second domain, a third domain, and a fourth domain of the pixel area, and a plurality of branch electrodes separately connected to the first or the second main electrode. When a maximum voltage is applied to the display panel, the liquid crystal layer has an average Azimuthal Angle represented as y1, satisfying B1
Abstract:
A display panel is disclosed, which comprises: a first substrate with plural pixel units formed thereon, wherein the pixel units at least comprise a first subpixel unit being a blue pixel unit and a second subpixel unit being a green pixel unit, wherein the first subpixel unit comprises a first subpixel electrode comprising a first trunk electrode, and the second subpixel unit comprises a second subpixel electrode comprising a second trunk electrode; and a second substrate opposite to the first substrate. When light passes through the display panel, a width of a first dark line corresponding to the first trunk electrode is larger than that of a second dark line corresponding to the second trunk electrode.
Abstract:
A display panel comprises a first substrate, a second substrate and a pixel array. The pixel array is disposed between the first substrate and the second substrate and comprises a pixel electrode and a data line. The data line is disposed adjacent to the pixel electrode and disposed above a side of the first substrate facing the second substrate. The pixel electrode comprises a first trunk electrode and a plurality of branch electrodes. An extension of the first trunk electrode along a first direction crosses the data line and the first trunk electrode connects to the branch electrodes. The branch electrodes extend along a second direction. An angle y is formed by the first direction and the second direction, x is the value of the ppi of the display panel, and x and y satisfy the following equations: A1=−1.28×10−5(x)3+0.0047722(x)2−0.383068(x)+59.494865, B1=−2.38×10−5(x)3+0.0093751(x)2−1.098394(x)+81.919357, B1