Abstract:
A computing platform implements one or more secure enclaves including a first provisioning enclave to interface with a first provisioning service to obtain a first attestation key from the first provisioning service, a second provisioning enclave to interface with a different, second provisioning service to obtain a second attestation key from the second provisioning service, and a provisioning certification enclave to sign first data from the first provisioning enclave and second data from the second provisioning enclave using a hardware-based provisioning attestation key. The signed first data is used by the first provisioning enclave to authenticate to the first provisioning service to obtain the first attestation key and the signed second data is used by the second provisioning enclave to authenticate to the second provisioning service to obtain the second attestation key.
Abstract:
Embodiments include systems, methods, computer readable media, and devices configured to, for a first processor of a platform, generate a platform root key; create a data structure to encapsulate the platform root key, the data structure comprising a platform provisioning key and an identification of a registration service; and transmit, on a secure connection, the data structure to the registration service to register the platform root key for the first processor of the platform. Embodiments include systems, methods, computer readable media, and devices configured to store a device certificate received from a key generation facility; receive a manifest from a platform, the manifest comprising an identification of a processor associated with the platform; and validate the processor using a stored device certificate.
Abstract:
Technologies for establishing device locality are disclosed. A processor in a computing device generates an identifier distinct to the computing device. The processor transmits the identifier to a management controller via a hardware bus in the computing device. The processor generates a key and encrypts the key with the identifier to generate a wrapped key. The processor transmits the wrapped key to the management controller. In turn, the management controller unwraps the key using the identifier. Other embodiments are described and claimed.
Abstract:
Apparatuses, methods and storage medium associated with application execution enclave cache management, are disclosed herein. In embodiments, an apparatus may include one or more processors with supports for application execution enclaves; cache memory coupled with the one or more processors to be organized into a plurality of cache pages; and an exception handler to be operated by the one or more processors to handle cache page fault exceptions, wherein to handle cache page fault exceptions includes to handle a cache page fault triggered to request additional allocation of one or more cache pages to an execution enclave of an application. Other embodiments may be described and/or claimed.
Abstract:
Systems, apparatuses and methods may provide for verifying, from outside a trusted computing base of a computing system, an identity an enclave instance prior to the enclave instance being launched in the trusted computing base, determining a memory location of the enclave instance and confirming that the memory location is local to the computing system. In one example, the enclave instance is a proxy enclave instance, wherein communications are conducted with one or more additional enclave instances in the trusted computing base via the proxy enclave instance and an unencrypted channel.
Abstract:
A computing platform implements one or more secure enclaves including a first provisioning enclave to interface with a first provisioning service to obtain a first attestation key from the first provisioning service, a second provisioning enclave to interface with a different, second provisioning service to obtain a second attestation key from the second provisioning service, and a provisioning certification enclave to sign first data from the first provisioning enclave and second data from the second provisioning enclave using a hardware-based provisioning attestation key. The signed first data is used by the first provisioning enclave to authenticate to the first provisioning service to obtain the first attestation key and the signed second data is used by the second provisioning enclave to authenticate to the second provisioning service to obtain the second attestation key.
Abstract:
Technologies for secure access to platform security services include a computing device having a processor and a security engine. The computing device establishes a platform services enclave in a virtual machine of the computing device using secure enclave support of the processor. The platform services enclave receives a platform services request from an application enclave via a first authenticated session and transmits the platform services request to a virtual security engine established by a host environment via a second authenticated session. The first and second authenticated sessions may be authenticated by report-based attestation and quote-based attestation, respectively. The virtual security engine transmits the platform services request to the security engine via a long-term pairing session established by the virtual security engine with the security engine. The security engine performs the platform services request using hardware resources shared with other platform services enclaves. Other embodiments are described and claimed.
Abstract:
Embodiments include systems, methods, computer readable media, and devices configured to, for a first processor of a platform, generate a platform root key; create a data structure to encapsulate the platform root key, the data structure comprising a platform provisioning key and an identification of a registration service; and transmit, on a secure connection, the data structure to the registration service to register the platform root key for the first processor of the platform. Embodiments include systems, methods, computer readable media, and devices configured to store a device certificate received from a key generation facility; receive a manifest from a platform, the manifest comprising an identification of a processor associated with the platform; and validate the processor using a stored device certificate.
Abstract:
Technologies for establishing device locality are disclosed. A processor in a computing device generates an identifier distinct to the computing device. The processor transmits the identifier to a management controller via a hardware bus in the computing device. The processor generates a key and encrypts the key with the identifier to generate a wrapped key. The processor transmits the wrapped key to the management controller. In turn, the management controller unwraps the key using the identifier. Other embodiments are described and claimed.
Abstract:
Embodiments include systems, methods, computer readable media, and devices configured to, for a first processor of a platform, generate a platform root key; create a data structure to encapsulate the platform root key, the data structure comprising a platform provisioning key and an identification of a registration service; and transmit, on a secure connection, the data structure to the registration service to register the platform root key for the first processor of the platform. Embodiments include systems, methods, computer readable media, and devices configured to store a device certificate received from a key generation facility; receive a manifest from a platform, the manifest comprising an identification of a processor associated with the platform; and validate the processor using a stored device certificate.