-
公开(公告)号:US20200310802A1
公开(公告)日:2020-10-01
申请号:US16370459
申请日:2019-03-29
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US20210049013A1
公开(公告)日:2021-02-18
申请号:US17087536
申请日:2020-11-02
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US11681530B2
公开(公告)日:2023-06-20
申请号:US17688728
申请日:2022-03-07
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
CPC classification number: G06F9/30145 , G06F9/30043 , G06F9/30196 , G06F9/3887 , H04L9/0643
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US11567772B2
公开(公告)日:2023-01-31
申请号:US17537373
申请日:2021-11-29
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US20220188114A1
公开(公告)日:2022-06-16
申请号:US17688728
申请日:2022-03-07
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US20220100517A1
公开(公告)日:2022-03-31
申请号:US17033741
申请日:2020-09-26
Applicant: Intel Corporation
Inventor: Ilya Albrekht , Wajdi Feghali , Regev Shemy , Or Beit Aharon , Mrinmay Dutta , Vinodh Gopal , Vikram B. Suresh
Abstract: Disclosed embodiments relate to systems and methods to performing instructions structured to compute a plurality of cryptic rounds of the block cipher. In one example, a processor includes fetch and decode circuitry to fetch and decode a single instruction comprising a first field to identify a destination of a first operand, a second field to identify a source of a second operand comprising an input state, a third field to identify a source of a third operand comprising a round key. The processor includes execution circuitry to execute the decoded instruction to compute a plurality of cryptic rounds of the block cipher by performing a round function on data elements of the second operand and the third operand to generate a word.
-
公开(公告)号:US10824428B2
公开(公告)日:2020-11-03
申请号:US16370459
申请日:2019-03-29
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US20240036865A1
公开(公告)日:2024-02-01
申请号:US18336985
申请日:2023-06-17
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
CPC classification number: G06F9/30145 , G06F9/30043 , G06F9/30196 , G06F9/3887 , H04L9/0643
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US20220147356A1
公开(公告)日:2022-05-12
申请号:US17537373
申请日:2021-11-29
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
公开(公告)号:US11188335B2
公开(公告)日:2021-11-30
申请号:US17087536
申请日:2020-11-02
Applicant: Intel Corporation
Inventor: Regev Shemy , Zeev Sperber , Wajdi Feghali , Vinodh Gopal , Amit Gradstein , Simon Rubanovich , Sean Gulley , Ilya Albrekht , Jacob Doweck , Jose Yallouz , Ittai Anati
Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
-
-
-
-
-
-
-
-
-