Abstract:
Methods related to communication between and within nodes in a high performance computing system are presented. Processing time for message exchange between a processing unit and a network controller interface in a node is reduced. Resources required to manage application state in the network interface controller are minimized. In the network interface controller, multiple contexts are multiplexed into one physical Direct Memory Access engine. Virtual to physical address translation in the network interface controller is accelerated by using a plurality of independent caches, with each level of the page table hierarchy cached in an independent cache. A memory management scheme for data structures distributed between the processing unit and the network controller interface is provided. The state required to implement end-to-end reliability is reduced by limiting the transmit sequence number space to the currently in-flight messages.
Abstract:
Examples include a method of managing storage for triggered operations. The method includes receiving a request to allocate a triggered operation; if there is a free triggered operation, allocating the free triggered operation; if there is no free triggered operation, recovering one or more fired triggered operations, freeing one or more of the recovered triggered operations, and allocating one of the freed triggered operations; configuring the allocated triggered operation; and storing the configured triggered operation in a cache on an input/output (I/O) device for subsequent asynchronous execution of the configured triggered operation.