Semantic pattern extraction from continuous itemsets

    公开(公告)号:US10915691B2

    公开(公告)日:2021-02-09

    申请号:US16457209

    申请日:2019-06-28

    Abstract: A semantic pattern extraction system can distill tremendous amounts of silicon wafer manufacturing data to generate a small set of simple sentences (semantic patterns) describing physical design geometries that may explain manufacturing defects. The system can analyze many SEM images for manufacturing defects in areas of interest on a wafer. A tagged continuous itemset is generated from the images, with items comprising physical design feature values corresponding to the areas of interest and tagged with the presence or absence of a manufacturing defect. Entropy-based discretization converts the continuous itemset into a discretized one. Frequent set mining identifies a set of candidate semantic patterns from the discretized itemset. Candidate semantic patterns are reduced using reduction techniques and are scored. A ranked list of final semantic patterns is presented to a user. The final semantic patterns can be used to improve a manufacturing process.

Patent Agency Ranking