Abstract:
A system for processing data flow array instructions is described. The system includes a data flow array, which includes a plurality of processing elements; a decoder to receive a data flow array instruction and generate a set of microinstructions based on the data flow array instruction; a reservation station to receive and dispatch each microinstruction in the set of microinstructions, wherein the set of microinstructions includes a configuration microinstruction for configuring the data flow array for processing the data flow array instruction; a configuration watcher to receive the configuration microinstruction and to add a configuration identifier and a set of parameters of the configuration microinstruction to a configuration queue for the data flow array, wherein the data flow array is to configure the plurality of processing elements based on configuration information associated with the configuration identifier and the set of parameters.
Abstract:
A method for tracing software code executing on a core of a processor is described. The method includes generating a set of packets for a trace packet stream based on a main cycle counter, which maintains a count of cycles elapsing in the core since a packet was emitted into the trace packet stream, and a commit cycle counter, which maintains a cycle count in the core since the last commit operation, wherein the generating comprises (1) storing a value of the main cycle counter in the commit cycle counter in response to detecting a commit operation and (2) storing a value of the commit cycle counter in the main cycle counter in response to detecting an abort in the core; and emitting the set of packets from the processor into the trace packet stream for tracing execution of the software code.
Abstract:
A processor and method are described for scheduling operations for execution within a reservation station. For example, a method in accordance with one embodiment of the invention includes the operations of: classifying a plurality of operations based on the execution ports usable to execute those operations; allocating the plurality of operations into groups within a reservation station based on the classification, wherein each group is serviced by one or more execution ports corresponding to the classification, and wherein two or more entries within a group share a common read port and a common write port; dynamically scheduling two or more operations in a group for concurrent execution based on the ports capable of executing those operations and a relative age of the operations.