Abstract:
Embodiments of an Evolved Node-B (eNB), Local Controller (LC) device, and methods for allocation of shared spectrum for secondary usage are generally described herein. In some cases, primary usage of the shared spectrum may be prioritized over the secondary usage of the shared spectrum. The eNB may receive, from the LC device, a spectrum availability message that indicates an availability of the shared spectrum for the secondary usage. The eNB may transmit, to the LC device, spectrum sensing information that is based at least partly on one or more signal strength measurements for UEs connected to the eNB. The eNB may further transmit, to the LC device, a spectrum engagement message that indicates an intention of the eNB to use at least a portion of the shared spectrum for communication with the UEs.
Abstract:
A mobile terminal device may include a radio processing circuit and a baseband processing circuit adapted to interact with the radio processing circuit. The mobile terminal device may be configured to transmit or receive a data sequence using a first channel and a second channel according to a data allocation ratio, wherein the data sequence is allocated between frequency division duplexing (FDD) transmission or reception and time division duplexing (TDD) transmission or reception according to the data allocation ratio, and concurrently to transmitting or receiving the data sequence, recurrently adjust the data allocation ratio to re-allocate the distribution of the data sequence between FDD transmission or reception and TDD transmission or reception on the first channel and the second channel.
Abstract:
A mobile terminal device may include a radio processing circuit and a baseband processing circuit adapted to interact with the radio processing circuit. The mobile terminal device may be configured to transmit or receive a data sequence using a first channel and a second channel according to a data allocation ratio, wherein the data sequence is allocated between frequency division duplexing (FDD) transmission or reception and time division duplexing (TDD) transmission or reception according to the data allocation ratio, and concurrently to transmitting or receiving the data sequence, recurrently adjust the data allocation ratio to re-allocate the distribution of the data sequence between FDD transmission or reception and TDD transmission or reception on the first channel and the second channel.
Abstract:
Described herein are technologies related to an implementation of reducing a time cost of accessing a Licensed Shared Access (LSA) during a transmission opportunity in a transceiver circuitry of a portable device.