Stacked buck converter with inductor switching node pre-charge and conduction modulation control

    公开(公告)号:US12113442B2

    公开(公告)日:2024-10-08

    申请号:US17132814

    申请日:2020-12-23

    Inventor: Sally Amin

    CPC classification number: H02M3/1584 G06F1/3287

    Abstract: A stacked voltage regulator (VR) that pre-charges inductor switching node to mitigate EOS. The stacked VR comprises at least three n-type devices (low-side) and three p-type devices (high-side) coupled in series. The three p-type stacked devices are part of a high-side of the VR. Node Vx coupling one of the n-type devices and one of the p-type devices is coupled to an inductor, which is also coupled to a load capacitor. During the inductor charging phase, in the low-to-high transition, a small p-type device is added to pre-charge the inductor switching node (Vx) from “0” to “VDD−Vth” through the low-side by connecting a generated mid-rail “Vdd” to the internal node of the n-type stack for a short period (e.g., about 50 ps). A controlled conductance modulation (CCM) scheme on the high-side top switch during the inductor charging phase is used to mitigate the ringing without controlling the gate drive strength.

    STACKED BUCK CONVERTER WITH INDUCTOR SWITCHING NODE PRE-CHARGE AND CONDUCTION MODULATION CONTROL

    公开(公告)号:US20210152090A1

    公开(公告)日:2021-05-20

    申请号:US17132814

    申请日:2020-12-23

    Inventor: Sally Amin

    Abstract: A stacked voltage regulator (VR) that pre-charges inductor switching node to mitigate EOS. The stacked VR comprises at least three n-type devices (low-side) and three p-type devices (high-side) coupled in series. The three p-type stacked devices are part of a high-side of the VR. Node Vx coupling one of the n-type devices and one of the p-type devices is coupled to an inductor, which is also coupled to a load capacitor. During the inductor charging phase, in the low-to-high transition, a small p-type device is added to pre-charge the inductor switching node (Vx) from “0” to “VDD−Vth” through the low-side by connecting a generated mid-rail “Vdd” to the internal node of the n-type stack for a short period (e.g., about 50 ps). A controlled conductance modulation (CCM) scheme on the high-side top switch during the inductor charging phase is used to mitigate the ringing without controlling the gate drive strength.

Patent Agency Ranking