Abstract:
The circuit and method translate a logic level input signal to signals at high voltage levels to drive a power device, such as a power MOSFET, while minimizing the power consumption. The circuit for driving the power device includes a low side gate driver, and a high side gate driver adjacent thereto. The high side gate drive includes a high side gate driver logic input, a high side gate driver output, a latch connected between the high side gate driver logic input and the high side gate driver output, and a control circuit receiving an output of the latch and controlling signals from the high side gate driver logic input to the latch based upon the output of the latch.
Abstract:
An analog comparator architecture has improved immunity to single event effects and variations in input offset voltage. A conventional single analog comparator-based circuit is replaced with plural comparators, driving a nullmajority votenull logic block. The effective input offset voltage of the multi-comparator design is the middle one of the individual comparators' input offset voltages. A single event upset on any comparator may momentarily perturb its output into the incorrect state; however, the output of the majority voting logic block will remain in the correct state, as only one comparator is upset. In addition, where a heavy ion strike on any comparator's bias current source causes a momentary loss of bias current, this upsets only one comparator, so that the output of the voting logic block is unaffected.
Abstract:
A junction isolated Complementary Metal Oxide Semiconductor (CMOS) transistor device includes a substrate of a first conductivity type and first and second buried layers formed within the substrate and having a second conductivity type opposite from the first conductivity type. First and second well regions of respective first and second conductivity are formed above respective first and second buried layers. An NMOS transistor and PMOS transistor are formed in the respective first and second well regions. The buried layer of the NMOS transistor is at nullV (typically ground) and the buried layer of the PMOS transistor is biased at a positive supply voltage and spaced sufficiently from the NMOS transistor to improve single event effects occurrence.