Abstract:
The present embodiments relate generally to managing power in a system including a battery, and more particularly to a flexible or hybrid battery charging topology for a system including a battery. In addition to being capable of operating in a conventional narrow voltage DC (NVDC) buck-boost charger mode, it is also capable of operating in a new “turbo power buck-boost” mode, where the input voltage is directly fed to the system load, bypassing the inductor. Compared with the conventional NVDC buck-boost charger topology, the flexible or hybrid topology provided by the present embodiments reduces the inductor size otherwise needed to support new mobile charging protocols, among many other benefits and advantages.
Abstract:
An embodiment of a power-supply controller includes first and second circuits. The first circuit is operable to cause a first current to flow through a first phase of a power supply. And the second circuit is operable to cause the second phase of the power supply to operate in a reduced-power-dissipation mode for at least a portion of a time period during which a second current magnetically induced by the first current flows through the second phase.
Abstract:
An embodiment of a power supply includes an input node operable to receive an input voltage, an output node operable to provide a regulated output voltage, an odd number of magnetically coupled phase paths each coupled between the input and output nodes, and a first magnetically uncoupled phase path coupled between the input and output nodes. Such a power supply may improve its efficiency by activating different combinations of the coupled and uncoupled phase paths depending on the load conditions. For example, the power supply may activate only an uncoupled phase path during light-load conditions, may activate only coupled phase paths during moderate-load conditions, and may activate both coupled and uncoupled phase paths during heavy-load conditions and during a step-up load transient.
Abstract:
An embodiment of a coupled-inductor core includes first and second members and first and second forms extending between the first and second members. The first form has a parameter (e.g., length) of a first value, and is operable to conduct a first magnetic flux having a first density that depends on the first value of the parameter. The second form is spaced apart from the first form, has the parameter (e.g., length) of a second value different from the first value, and is operable to conduct a second magnetic flux having a second density that depends on the second value of the parameter. Because two or more of the forms of such a core may have different values for the same parameter, the core may be suitable for use in a multiphase power supply where the currents through the phases are unbalanced.