Abstract:
A constant voltage circuit amplifies an error between a reference voltage and an output voltage by an operational amplifier, and controls a load current based on the amplified voltage so that the output voltage becomes a constant voltage. The constant voltage circuit includes voltage detector means that detects only AC components of the output voltage limited to a predetermined band and outputs a detected voltage; voltage amplifier means that amplifies AC components of the detected voltage and outputs an amplified voltage; judgment means that outputs a judgment signal indicating whether or not the amplified voltage equal to or larger than a predetermined threshold; and controller means configured to increase a current value of the constant current source included in the operational amplifier, based on the judgment signal, thereby temporarily increasing a current consumption of the operational amplifier.
Abstract:
An electrical system including a body having a structure resembling a double helix having twisted conductive wires wound around both helical structures may be used to produce useful electromagnetic effects for various applications, including providing therapy and promoting growth of living organisms.
Abstract:
A station building power supply device according to the present invention includes: a station building power generation unit including an inverter main circuit and an inverter control circuit to control the inverter main circuit, in which the inverter main circuit converts a voltage supplied from an overhead wire into a voltage required by loads in a station building; a control-circuit power generation unit that converts a voltage supplied to the loads in the station building and generates an input voltage for the inverter control circuit; and a start-up power generation unit that converts a voltage supplied from the overhead wire and generates an input voltage for the inverter control circuit, in a state where the inverter main circuit has stopped the operation and the control-circuit power generation unit has stopped an operation of generating the input voltage for the inverter control circuit.
Abstract:
A system for reducing electrical consumption includes a connection to an incoming power supply of a facility, in parallel, including a hot line, and a neutral line, a ground. Components are connected between the hot line and the neutral line in this order: front capacitors front arc suppressors, at least one front metal oxide varistor line transient voltage surge suppressor having a predetermined capability to suppress undesired power spikes, at least two inductor/metal oxide varistor iterative transformers, at least one of these being a three component iterative transformer with three distinct windings, followed by other components.
Abstract:
A programmable temperature compensated voltage reference is disclosed. In an exemplary embodiment, an apparatus includes a digital-to-analog converter (DAC) that uses a reference voltage and a code to generate a DAC output voltage. The apparatus also includes a temperature compensator that uses a temperature measurement (T) and the DAC code to generate a temperature compensation signal. The temperature compensation signal is represented by a third order polynomial equation. The apparatus also includes a signal combiner that combines the DAC output voltage and the temperature compensation signal to generate a temperature compensated programmable reference voltage.
Abstract:
A high-efficiency digital voltage controller capable of providing monotonically-varying stepwise voltage, said controller comprises of a plurality of two-terminal voltage modules connected in series; within each module one or more two-terminal voltage cells of identical voltage each and connected in series; within each module a plurality of switches controllable to connect any number of the voltage cells in series to the output terminals of the voltage module; the ratios of the magnitudes of voltage of any one voltage cell between the voltage modules being substantially equal to integer values uniquely defined by present invention, according to the numbers of voltage cells in each of the voltage modules; said plurality of switches being controlled by a control module implemented in any suitable logic.
Abstract:
Disclosed is a method for reducing the variation in voltage, due to Ferranti effect, using the impedance injection capability of distributed impedance injection modules. The Ferranti effect is an increase in voltage occurring at the receiving end of a long transmission line in comparison to the voltage at the sending end. This effect is more pronounced on longer lies and underground lines when the high-voltage power lines are energized with a very low load, when there is a change from a high load to a very light load, or the load is disconnected from the high-voltage power lines of the power grid. This effect creates a problem for voltage control at the distribution end of the power grid.
Abstract:
A programmable temperature compensated voltage reference is disclosed. In an exemplary embodiment, an apparatus includes a digital-to-analog converter (DAC) that uses a reference voltage and a code to generate a DAC output voltage. The apparatus also includes a temperature compensator that uses a temperature measurement (T) and the DAC code to generate a temperature compensation signal. The temperature compensation signal is represented by a third order polynomial equation. The apparatus also includes a signal combiner that combines the DAC output voltage and the temperature compensation signal to generate a temperature compensated programmable reference voltage.
Abstract:
A control system includes a load including an operative part, and a control device for supplying AC power to the load through a power line and operating the operative part. The control device includes an interruption mechanism and a transmission mechanism. The load includes a controller. The transmission mechanism transmits a predetermined control signal to the load through the power line by blocking the power supply to the load by the interruption mechanism for a time duration shorter than a half cycle of AC output. The controller controls the operative part based on the control signal received from the control device.
Abstract:
An electricity management apparatus includes: a communication unit for receiving electricity information through a smart grid electricity information network, or transmitting electricity management information on an electronic device connected to a network through an internal network; a reference value setting unit for setting a total area, and setting a maximum allowable electricity reference value and an inspection electricity reference value corresponding to the set total area; and a controller for performing controlling to determine a management mode for each electronic device connected to the internal network, in consideration of an electricity proportional value comparing a current accumulated used electricity value comparing a current time to a certain time, when a current inspection used electricity value exceeds the set inspection electricity reference value, and to transmit the electricity management information corresponding to the determined management mode.