摘要:
Resin members, on the surfaces of which metal films are formed, are used for; an auxiliary air passage provided in a main air passage, in which a sensor element of a physical quantity sensor such as an air flow sensor, an intake-air temperature sensor, etc., is situated; a housing; and so forth; in order to decrease both the thermal conductivity and the emissivity of those components to respective small values, whereby the temperature increase of the sensor due to both the heat conduction and the heat radiation can be suppressed.
摘要:
Resin members, on the surfaces of which metal films are formed, are used for; an auxiliary air passage provided in a main air passage, in which a sensor element of a physical quantity sensor such as an air flow sensor, an intake-air temperature sensor, etc., is situated; a housing; and so forth; in order to decrease both the thermal conductivity and the emissivity of those components to respective small values, whereby the temperature increase of the sensor due to both the heat conduction and the heat radiation can be suppressed.
摘要:
The present invention provides an air flow measuring device comprising a housing with a sub-passage having a inlet and a outlet for air flow formed in the housing, the sub-passage further having a predefined curvature with a maximum downstream point and a flow measuring element located in the sub-passage at a position at least further downstream from the point.
摘要:
A thermal type flow rate measuring device can certainly prevent adhesion of water droplet onto a sensor element and thus achieve high reliability. The thermal type flow rate measuring device includes an auxiliary passage defined within a main passage for introducing a part of fluid flowing through the main passage, a sensor disposed within the auxiliary passage for detecting flow rate of the fluid and capturing means formed on an inner periphery of the auxiliary passage for capturing liquid contained in the fluid and transferring the captured liquid.
摘要:
A flow rate sensor has a problem that a resistance value of a heat generating resistor itself varies and sensor characteristics are changed during use of the sensor for a long term. Also, the temperature of the heat generating resistor must be adjusted on a circuit substrate with a resistance constituting one side of a fixed temperature difference control circuit, and this has been one of factors pushing up the production cost. All resistances used for fixed temperature difference control are formed on the same substrate as temperature sensitive resistors of the same material. This enables all the resistances for the fixed temperature difference control to be exposed to the same environmental conditions. Hence, even when the resistances change over time, the changes over time occur substantially at the same tendency. Since the resistances for the fixed temperature difference control change over time essentially at the same rate, a resulting output error is very small.
摘要:
The present invention provides an air flow measuring device comprising a housing with a sub-passage having a inlet and a outlet for air flow formed in the housing, the sub-passage further having a predefined curvature with a maximum downstream point and a flow measuring element located in the sub-passage at a position at least further downstream from the point.
摘要:
A flow rate sensor has a problem that a resistance value of a heat generating resistor itself varies and sensor characteristics are changed during use of the sensor for a long term. Also, the temperature of the heat generating resistor must be adjusted on a circuit substrate with a resistance constituting one side of a fixed temperature difference control circuit, and this has been one of factors pushing up the production cost. All resistances used for fixed temperature difference control are formed on the same substrate as temperature sensitive resistors of the same material. This enables all the resistances for the fixed temperature difference control to be exposed to the same environmental conditions. Hence, even when the resistances change over time, the changes over time occur substantially at the same tendency. Since the resistances for the fixed temperature difference control change over time essentially at the same rate, a resulting output error is very small.
摘要:
There is provided a flow rate measuring device which comprises a means for introducing a backward flow of the main passage into the sub-passage through the outlet of the sub-passage of the flow rate measuring device is provided near the outlet of the sub-passage, in order to keep the flow rate measuring element from being destroyed under the presence of dust and water in an intake manifold and which has high reliability for a long period of use and an excellent pulsation characteristic.
摘要:
A flow rate sensor has a problem that a resistance value of a heat generating resistor itself varies and sensor characteristics are changed during use of the sensor for a long term. Also the temperature of the heat generating resistor must be adjusted on a circuit substrate with a resistance constituting one side of a fixed temperature difference control circuit, and this has been one of factors pushing up the production cost. All resistances used for fixed temperature difference control are formed on the same substrate as temperature sensitive resistors of the same material. This enables all the resistances for the fixed temperature difference control to be exposed to the same environmental conditions. Hence, even when the resistances change over time, the changes over time occur substantially at the same tendency. Since the resistances for the fixed temperature difference control change over time essentially at the same rate, a resulting output error is very small.
摘要:
A support member where a flow amount detection element, which includes a heating resistor and electronic circuit parts for obtaining the air flow amount according to the flow amount signal detected by flow amount detection element are mounted, is cooled from both the direction of the main flow of main passage and the direction of an anti-main flow (i.e., the direction opposite to the direction of the main flow).