Abstract:
A method for a defined deposition of a glass layer on an inner wall of a preform for an optical fiber and/or for setting a refractive index profile of the preform for a multi-mode fiber. The method includes providing the preform having a cavity and an inner wall which defines an inner diameter of the preform, and spreading a deposition gas at a flow speed (v) in the cavity of the preform so as to provide the defined deposition of the glass layer. The defined deposition is performed at a reduced change in the flow speed a*Δv, where a
Abstract:
A device for coating a fiber includes a fiber receiving arrangement and a coating arrangement which includes an application unit which wets the fiber with a coating agent, and a curing unit arranged downstream of the application unit which optically cures the coating agent. The curing unit includes a lamp which emits at least one light beam which is aimed directly or indirectly at a surface of the fiber. A main radiation direction of the lamp includes a beam angle between the main radiation direction and a longitudinal direction of the fiber of less than 40°. The fiber receiving arrangement and the application unit are movable relative to each other in the longitudinal direction of the fiber via a translational motion arrangement so that a wetting process is implemented substantially along an entire length of the fiber.
Abstract:
The invention relates to a method for producing a polarization-maintaining optical fiber, consisting of a core region and stress-generating elements embedded in the fiber body, having the following method steps: producing a core preform for the core region using internal deposition on a substrate tube, the internally coated substrate tube subsequently being collapsed, generating recesses on the core preform by virtue of the material on the outer surface of the core preform being removed parallel to the longitudinal axis of the core preform at diametrically opposed positions, filling the recesses with stress-generating rods, with the tightest possible rod packing, in a freely selectable first filling geometry, possibly filling the recesses in addition with non-stress-generating rods in a second filling geometry, sheathing the filled core preform with a jacketing tube, preparing the sheathed core preform for a fiber-drawing process, and drawing the sheathed arrangement to form the optical fiber. A preform for producing a polarization-maintaining optical fiber contains a core preform, having a core region and a lateral region, and also contains a jacketing tube, which encloses the core preform, as well as stress-generating elements contained in the lateral region, wherein the stress-generating elements are provided in the form of recesses in the lateral region, wherein the recesses are filled with doped rods and/or undoped rods, and wherein the rod filling forms a first and/or a second arrangement geometry.
Abstract:
Methods for making active laser fibers include the production of an optical fiber with disturbed (or deviated) cylindrical symmetry on the glass surface of the fiber. The methods include a preform containing a central core made of glass. In one embodiment, the preform is circular and surrounded by additional glass rods and an outer glass jacket tube. In a first alternative embodiment, this preform is merged during fiber drawing. In a second alternative embodiment, the preform merged in a process forming a compact glass body with disturbed cylindrical symmetry. This compact preform is drawn into a fiber under conditions maintaining the disturbed cylindrical symmetry.
Abstract:
A sensor fiber for the detection of changes of temperature, bending, and/or torsion includes a multicore optical waveguide with a fiber Bragg grating (FBG) structure. One embodiment contains at least two FBG cores and a surrounding cladding. The sensor fiber is characterized by one or more distinction and orientation means which produce a marker zone to assign and label each individual FBG core.
Abstract:
The invention relates to a method for producing a polarization-maintaining optical fibre, consisting of a core region and stress-generating elements embedded in the fibre body, having the following method steps: producing a core preform for the core region using internal deposition on a substrate tube, the internally coated substrate tube subsequently being collapsed, generating recesses on the core preform by virtue of the material on the outer surface of the core preform being removed parallel to the longitudinal axis of the core preform at diametrically opposed positions, filling the recesses with stress-generating rods, with the tightest possible rod packing, in a freely selectable first filling geometry, possibly filling the recesses in addition with non-stress-generating rods in a second filling geometry, sheathing the filled core preform with a jacketing tube, preparing the sheathed core preform for a fibre-drawing process, and drawing the sheathed arrangement to form in the optical fibre. A preform for producing a polarization-maintaining optical fibre contains a core preform, having a core region and a lateral region, and also contains a jacketing tube, which encloses the core preform, as well as stress-generating elements contained in the lateral region, wherein the stress-generating elements are provided in the form of recesses in the lateral region, wherein the recesses are filled with doped rods and/or undoped rods, and wherein the rod filling forms a first and/or a second arrangement geometry.
Abstract:
Methods for making active laser fibers include the production of an optical fiber with disturbed (or deviated) cylindrical symmetry on the glass surface of the fiber. The methods include a preform containing a central core made of glass. In one embodiment, the preform is circular and surrounded by additional glass rods and an outer glass jacket tube. In a first alternative embodiment, this preform is merged during fiber drawing. In a second alternative embodiment, the preform merged in a process forming a compact glass body with disturbed cylindrical symmetry. This compact preform is drawn into a fiber under conditions maintaining the disturbed cylindrical symmetry.
Abstract:
A sensor fiber for the detection of changes of temperature, bending, and/or torsion includes a multicore optical waveguide with a fiber Bragg grating (FBG) structure. One embodiment contains at least two FBG cores and a surrounding cladding. The sensor fiber is characterized by one or more distinction and orientation means which produce a marker zone to assign and label each individual FBG core.