摘要:
Preferred embodiments of the invention provide semiconducting microcavity plasma devices. Preferred embodiments of the invention are microcavity plasma devices having at least two pn junctions, separated by a microcavity or microchannel and powered by alternate half-cycles of a time-varying voltage waveform. Alternate embodiments have a single pn junction. Microplasma is produced throughout the cavity between single or multiple pn junctions and a dielectric layer isolates the microplasma from the single or multiple pn junctions. Additional preferred embodiments are devices in which the spatial extent of the plasma itself or the n or p regions associated with a pn junction are altered by a third (control) electrode.
摘要:
Preferred embodiments of the invention provide semiconducting microcavity plasma devices. Preferred embodiments of the invention are microcavity plasma devices having at least two pn junctions, separated by a microcavity or microchannel and powered by alternate half-cycles of a time-varying voltage waveform. Alternate embodiments have a single pn junction. Microplasma is produced throughout the cavity between single or multiple pn junctions and a dielectric layer isolates the microplasma from the single or multiple pn junctions. Additional preferred embodiments are devices in which the spatial extent of the plasma itself or the n or p regions associated with a pn junction are altered by a third (control) electrode.
摘要:
InSb infrared photodiodes and sensor arrays with improved passivation layers and methods for making same are disclosed. In the method, a passivation layer of AlInSb is deposited on an n-type InSb substrate using molecular beam epitaxy before photodiode detector regions are formed in the n-type substrate. Then, a suitable P+ dopant is implanted directly through the AlInSb passivation layer to form photodiode detector regions. Next, the AlInSb passivation layer is selectively removed, exposing first regions of the InSb substrate, and gate contacts are formed in the first regions of the InSb substrate. Then, additional portions of the AlInSb passivation layer are selectively removed above the photodiode detectors exposing second regions. Next, metal contacts are formed in the second regions, and bump contacts are formed atop the metal contacts. Then, an antireflection coating is applied to a side of the substrate opposite from the side having the metal and bump contacts. Forming the AlInSb passivation layer before the photodiode detector regions reduces the number of defects created in the n-type InSb substrate during fabrication in comparison to conventional methods and improves the noise performance of InSb photodiodes and sensor arrays incorporating the improved passivation layer.