Abstract:
An organic electroluminescence (EL) display panel includes a substrate; first electrodes spaced away from each other and arrayed in rows and columns above the substrate; light-emitting layers including organic light-emitting material and disposed above the first electrodes; a second electrode disposed above the light-emitting layers; a first protection layer including resin and disposed above the second electrode but not within an auxiliary region which, in plan view, extends in a column direction between ones of the first electrodes that are adjacent in a row direction across the substrate; a second protection layer including inorganic material and disposed above the first protection layer and the second electrode; and an auxiliary electrode layer extending in the column direction within the auxiliary region and electrically connecting to the second electrode through a contact opening in the first protection layer within the auxiliary region.
Abstract:
A patterning device performs patterning in manufacture of a display panel in which thin films including an organic film are laminated above a substrate. The patterning device includes a chamber, light transmissive plates, and a laser emitter. The chamber has a light transmissive window including a first light transmissive plate through which a laser beam is transmitted and accommodates a thin film laminated substrate. A second light transmissive plate through which the laser beam is transmitted is in the chamber between the first light transmissive plate and the thin film laminated substrate at a position spaced away from the thin film laminated substrate. The laser emitter is outside the chamber and emits the laser beam towards the thin film laminated substrate, through the first light transmissive plate and the second light transmissive plate, to irradiate and remove a portion of the thin film.
Abstract:
An organic electro-luminescence (EL) element includes a first electrode, a light emitting layer, and a second electrode layered in this order above a substrate. At least one of the first electrode and the second electrode is a light transmissive electrode. The light transmissive electrode includes a base metal layer and a silver thin film. The base metal layer is a metal layer including an alkali metal or an alkaline earth metal as a material. The silver thin film is silver or a silver alloy including silver as a main component, and is disposed on and in contact with the base metal layer.
Abstract:
There is provided a method of manufacturing an organic light-emitting device including: forming a first organic material layer on a substrate; and forming a mask in a first region on the first organic material layer, and then selectively removing the first organic material layer to form a first organic layer in the first region.
Abstract:
There is provided a method of manufacturing an organic light-emitting device including: forming a first organic material layer on a substrate; and forming a mask in a first region on the first organic material layer, and then selectively removing the first organic material layer to form a first organic layer in the first region.
Abstract:
There is provided a method of manufacturing an organic light-emitting device including: forming a first organic material layer on a substrate; and forming a mask in a first region on the first organic material layer, and then selectively removing the first organic material layer to form a first organic layer in the first region.
Abstract:
An organic EL display panel including: a substrate; pixel electrodes that are arrayed in a matrix above the substrate; first organic functional layers that are on or above the pixel electrodes in one-to-one correspondence with the pixel electrodes, the first organic functional layers spaced apart from one another; a second organic functional layer that continuously covers the first organic functional layers; and a counter electrode that opposes the pixel electrodes and covers the second organic functional layer. In the organic EL display panel, the first organic functional layers each include a hole injection layer, and the second organic functional layer has greater electric resistance than each of the first organic functional layers and has a portion extending into an absence region, the absence region being a space between adjacent ones of the first organic functional layers.