Abstract:
The present invention is concerned with an expanded beads molded article of expanded beads comprising a crosslinked multi-block copolymer containing a polyethylene block and an ethylene/α-olefin copolymer block, wherein a density is 40 to 150 g/L; a gel fraction by a hot xylene extraction method is 30 to 70% by weight; a tensile elongation is 120% or more; a bead weight of the expanded beads is 0.8 to 8 mg; and the number of expanded beads per unit area on a surface of the expanded beads molded article is 5 to 30 per cm2, and is able to provide an expanded beads molded article which is light in weight and favorable in surface properties, fusion bondability, and durability.
Abstract:
The present invention provides expanded beads of thermoplastic polyurethane, wherein the thermoplastic polyurethane constituting the expanded beads is an ether-based thermoplastic polyurethane, and a difference (T1−T2) between a melting peak temperature (T1) and a melting peak temperature (T2) is from 0 to 8° C., wherein the melting peak temperature (T1) is a melting peak temperature at the time of first heating in a DSC curve obtained by heating the expanded beads from 20° C. to 260° C. at a heating rate of 10° C./min, the melting peak temperature (T2) is a melting peak temperature at the time of second heating in a DSC curve obtained by cooling from 260° C. to 20° C. at a cooling rate of 10° C./min after the first heating and further heating again from 20° C. to 260° C. at a heating rate of 10° C./min, and the DSC curves are obtained by the heat flux differential scanning calorimetry in conformity with JIS K7121-1987. The expanded beads of thermoplastic polyurethane not only have excellent surface appearance and fusion bonding properties but also have a low shrinkage factor.
Abstract:
Thermoplastic resin foamed particles of the present invention including more than one functional additive selected from inorganic powder and inorganic fibers each includes a core layer formed of a thermoplastic resin and a coating layer in a foamed state formed of a thermoplastic resin, the mass ratio of the coating layer to the core layer is 99:1 to 50:50, the content (X) of the functional additive in the core layer is 5 to 90% by mass, and the content of the functional additive in the coating layer is smaller than the content (X) of the functional additive in the core layer. By this way, thermoplastic resin foamed particles from which a homogeneous foamed particle molding having excellent dimension stability, fusibility and appearance can be obtained while containing functional additive are provided.
Abstract:
The present invention relates to an in-mold expanded beads molded article of expanded beads of an olefin thermoplastic elastomer, a cushion for shoe sole, and a method of producing expanded beads provided with through-holes and composed of a block copolymer of a polyethylene block and an ethylene/α-olefin copolymer block, and with respect to the in-mold expanded beads molded article of expanded beads of an olefin thermoplastic elastomer, a voidage of the expanded beads molded article is 5 to 40%; a density of the expanded beads molded article is 30 to 150 g/L; and a flexural modulus of the olefin thermoplastic elastomer that constitutes the expanded beads molded article is 10 to 100 MPa.
Abstract:
Provided are expanded beads capable of providing an expanded thermoplastic polyurethane beads molded article which is excellent in physical properties, such as compression characteristics, repulsion elasticity, etc., and an expanded thermoplastic polyurethane beads molded article. Expanded beads of thermoplastic polyurethane, wherein a Shore A hardness of the thermoplastic polyurethane is 85 or more; an average cell diameter of the expanded beads is 50 to 300 μm; and a closed cell ratio when bisecting the expanded thermoplastic polyurethane bead is 60% or more; and an expanded thermoplastic polyurethane beads molded article obtained through in-mold molding of the same are disclosed.
Abstract:
Polylactic acid-based resin expanded beads obtained by releasing a softened, pressurized foamable resin composition, which has a polylactic acid-based resin and a physical blowing agent, to a low pressure atmosphere to foam and expand the resin composition, where the polylactic acid-based resin satisfies the conditions (1) to (3) shown below, and exhibits excellent secondary expansion properties and fusion bonding properties. A polylactic acid-based resin expanded beads molded article obtained by in-mold molding of the polylactic acid-based resin expanded beads exhibits excellent mechanical properties. MT≦30 mN (1) log MT≦0.93 log η−1.75 (2) CT1/2≧600 sec (3) where MT represents a melt tension [mN] at 190° C., η represents a melt viscosity [Pa·s] at 190° C. and a shear speed of 20 sec−1, and CT1/2 represents a half crystallization time [sec] at 110° C.
Abstract:
A polylactic acid-based resin foamed molded article having a voidage of 5 to 45% by volume, a bulk density BD [g/cm3] of 0.01 to 0.2 g/cm3 and a ratio FT/BD of a flexural strength FT [MPa] thereof to the bulk density BD in the range of 6 to 25 MPa·cm3/g.
Abstract translation:空隙率为5〜45体积%,堆积密度BD [g / cm 3]为0.01〜0.2g / cm 3,弯曲强度FT / MPa的FT / BD的聚乳酸类树脂发泡成型体, 的体积密度BD在6〜25MPa·cm 3 / g的范围内。
Abstract:
The present invention relates to an expanded beads molded article, which is obtained through in-mold molding of expanded thermoplastic elastomer beads, has voids, and has a density of 150 to 300 kg/m3 and a voidage of 10 to 70% by volume.
Abstract:
The present invention relates to an expanded beads molded article containing a block copolymer of a polyethylene block and an ethylene-α-olefin copolymer block and having a density of 30 kg/m3 or more and less than 150 kg/m3 and a modulus of repulsion elasticity of 60% or more. The sole member of the present invention includes the expanded beads molded article of the present invention.
Abstract:
The present invention is concerned with expanded beads that are olefin-based thermoplastic elastomer expanded beads containing a coloring agent, wherein an apparent density of the expanded beads is 40 to 300 g/L, and an average surface layer membrane thickness (a) is 3 to 25 μm, and a molded article thereof, and is able to provide expanded beads capable of producing an expanded beads molded article which is excellent in in-mold moldability and excellent in tensile characteristics and an expanded beads molded article using the expanded beads.