摘要:
A monocular motion stereo-based automatic free parking space detection system is disclosed. The system acquires image sequences with a single rearview fisheye camera, three-dimensionally reconstructs the vehicle rearview by using point correspondences, and recovers metric information from a known camera height to estimate the positions of adjacent vehicles thereby detecting the free parking spaces. By using de-rotation-based feature selection and 3D structure mosaicking the degradation of the 3D structure near the epipole is solved and it is not necessary to use the unreliable odometry due to its accuracy depending on road conditions.
摘要:
A monocular motion stereo-based automatic free parking space detection system is disclosed. The system acquires image sequences with a single rearview fisheye camera, three-dimensionally reconstructs the vehicle rearview by using point correspondences, and recovers metric information from a known camera height to estimate the positions of adjacent vehicles thereby detecting the free parking spaces. By using de-rotation-based feature selection and 3D structure mosaicking the degradation of the 3D structure near the epipole is solved and it is not necessary to use the unreliable odometry due to its accuracy depending on road conditions.
摘要:
Disclosed is a method and a system for recognizing a target parking location of a vehicle. The system includes a scanning laser radar for detecting range data reflected and directed from a rear surface of the vehicle; a preprocessing unit for preprocessing the range data to extract effective clusters; a corner recognition unit for extracting obstacle corners from the effective clusters; and a parking location setting unit for recognizing a main reference corner, which is closest to a subjective vehicle and has an adjacent space satisfying an available parking space condition, and a sub reference corner, which exists toward the adjacent space in a direction opposite to a vehicle width direction from the main reference corner, and corresponds to a point on a closest effective cluster within a distance between a vehicle width and a vehicle length, from the obstacle corners to set a target parking location.
摘要:
An apparatus, method for detecting critical areas and a pedestrian detection apparatus using the same are provided. An application of the pedestrian detection system is provided to help limit critical urban environment to particular areas. Contrary to traditional pedestrian detection systems that localize every pedestrians appearing in front of the subject vehicle, the apparatus first finds critical areas from urban environment and performs a focused search of pedestrians. The environment is reconstructed using a standard laser scanner but the subsequent checking for the presence of pedestrians is performed by incorporating a vision system. The apparatus identifies pedestrians within substantially limited image areas and results in boosts of timing performance, since no evaluation of critical degrees is necessary until an actual pedestrian is informed to the driver or onboard computer.
摘要:
An apparatus, method for detecting critical areas and a pedestrian detection apparatus using the same are provided. An application of the pedestrian detection system is provided to help limit critical urban environment to particular areas. Contrary to traditional pedestrian detection systems that localize every pedestrians appearing in front of the subject vehicle, the apparatus first finds critical areas from urban environment and performs a focused search of pedestrians. The environment is reconstructed using a standard laser scanner but the subsequent checking for the presence of pedestrians is performed by incorporating a vision system. The apparatus identifies pedestrians within substantially limited image areas and results in boosts of timing performance, since no evaluation of critical degrees is necessary until an actual pedestrian is informed to the driver or onboard computer.
摘要:
Disclosed is a method and a system for recognizing a target parking location of a vehicle. The system includes a scanning laser radar for detecting range data reflected and directed from a rear surface of the vehicle; a preprocessing unit for preprocessing the range data to extract effective clusters; a corner recognition unit for extracting obstacle corners from the effective clusters; and a parking location setting unit for recognizing a main reference corner, which is closest to a subjective vehicle and has an adjacent space satisfying an available parking space condition, and a sub reference corner, which exists toward the adjacent space in a direction opposite to a vehicle width direction from the main reference corner, and corresponds to a point on a closest effective cluster within a distance between a vehicle width and a vehicle length, from the obstacle corners to set a target parking location.
摘要:
Disclosed is a method for detecting a light stripe for indoor navigation and a parking assist apparatus using the same. The apparatus applies light plane projection to indoor navigation, detects a light stripe from an image inputted through a camera, detects an obstacle, and assists vehicle parking by using an active steering device and an electronically controlled braking device. A light stripe width function is used to calculate a light stripe width, and a half value of the calculated light stripe width is used as a constant value of a LOG filter to conduct LOG filtering and detect the light stripe. The precision and rate of recognition of light stripes obtained by LOG filtering are advantageously improved. Therefore, obstacles are precisely recognized during indoor navigation, and parking is assisted efficiently.