摘要:
A heater of an inkjet printhead, an inkjet printhead having the heater, and a method of manufacturing the inkjet printhead. The heater is formed of an Ru-M-O alloy in which M is at least one metal selected from the group consisting of Ti, Ta, Pt, Ir, Zr, W, and Hf.
摘要:
A method of manufacturing an inkjet printhead, including forming a nozzle layer by radiating actinic radiation to a cross-linked polymer resist composition including a precursor polymer, a cationic photoinitiator, and a solvent, in which a concentration of the cationic photoinitiator is varied to control a tapered angle of a nozzle included in the nozzle layer.
摘要:
A heat transfer type ink-jet print head and a method of fabricating the same. A method of fabricating an ink-jet print head includes sequentially laminating a heat generation layer and an electrode layer on a substrate, laminating a protective layer on the top surfaces of the electrode layer and the heat generation layer by sequentially laminating a first protective layer and a second protective layer on the top surfaces of the electrode layer and the heat generation layer, and laminating an ink chamber barrier and a nozzle plate on the top surface of the protective layer to form an ink chamber to prevent defects such as “pin-holes” from being generated during the formation of the first protective layer.
摘要:
An inkjet printhead and a method of manufacturing the same. In the inkjet printhead, a substrate includes an ink chamber formed in a top surface to contain ink to be ejected, an ink feedhole formed in a bottom surface to supply the ink to the ink chamber, and a restrictor formed between the ink chamber and the ink feedhole to connect the ink chamber and the ink feedhole. A plurality of passivation layers are formed on the substrate. A heater and a conductor to apply a current to the heater are formed between the passivation layers. A heat transfer layer is formed on the passivation layers in a predetermined shape. An epoxy nozzle layer is formed to cover the passivation layers and the heat transfer layer. The epoxy nozzle layer is formed with a nozzle that is connected to the ink chamber.
摘要:
An ink-jet print head and a method of making the same comprising the steps of sequentially laminating a heating layer and an electric conductive layer on a substrate, patterning the electric conductive layer to expose a predetermined area of the top surface of the heating layer, forming a protective layer on the top surfaces of the electric conductive layer and exposed heating layer, and laminating an ink chamber barrier and a nozzle plate on the top surface of the protective layer, thereby forming an ink chamber. The protective layer is provided by forming a cavitation layer by alternately laminating at least two types of thin film layers of different materials over the exposed heating layer and the electric conductive layer to resist fractures and oxidization resulting from use.
摘要:
A method of manufacturing an inkjet printhead, including forming a nozzle layer by radiating actinic radiation to a cross-linked polymer resist composition including a precursor polymer, a cationic photoinitiator, and a solvent, in which a concentration of the cationic photoinitiator is varied to control a tapered angle of a nozzle included in the nozzle layer.
摘要:
A method of manufacturing an inkjet printhead includes preparing a substrate having a heater to hear ink and an electrode to supply current to the heater, applying a crosslinked polymer resist composition to the substrate having the heater and the electrode and patterning the same, and forming a passage forming layer that surrounds an ink passage, patterning the substrate having the passage forming layer by photolithography at least twice, and forming a sacrificial layer having a planarized top surface in a space surrounded by the passage forming layer, applying the crosslinked polymer resist composition to the passage forming layer and the sacrificial layer and patterning the same, and forming a nozzle layer having a nozzle, etching the substrate from the bottom surface thereof to be perforated, and forming an ink supply hole, and removing the sacrificial layer, wherein the crosslinked polymer resist composition comprises a precursor polymer that is a phenolic novolak resin having glycidyl ether functional groups on repeating monomer units.
摘要:
A method of fabricating a high efficiency inkjet print head includes forming an oxide film on a surface of a substrate, sequentially forming and patterning a heater layer and a wiring layer on the oxide film, forming a passivation layer on the heater layer and the wiring layer and patterning the passivation layer so that a heater is exposed, etching the substrate to form restrictors at both sides of the heater, forming a chamber layer on the passivation layer, forming a sacrificial layer on the chamber layer and polishing the sacrificial layer, forming a nozzle layer on the chamber layer, forming an ink-feed hole at a bottom surface of the substrate, and removing the sacrificial layer. The inkjet print head is capable of reducing energy consumption by fabricating a heater having high efficiency, and capable of maintaining good heating characteristics since an original temperature of the inkjet print head is rapidly recovered after the heater is instantly heated and electric current is not supplied. In addition, since the heater is mounted on the substrate, the inkjet print head can maintain structural integrity, and since the heater is formed in a planar shape without bent portions, the heater can be formed to a uniform thickness.
摘要:
An inkjet printhead includes a substrate having an ink chamber which is filled with ink to be ejected, a nozzle plate formed on the substrate in a position corresponding to the ink chamber, and a heat generating resistor installed in the ink chamber and formed of TiNx, where x ranges from 0.2 to 0.5, to generate ink bubbles in the ink by generating heat.
摘要:
An inkjet printer head includes a substrate having an ink-feed hole to supply ink stored in a cartridge to an ink chamber and a restrictor in fluid communication with the ink chamber, an oxide layer formed on the substrate, a heater disposed on the oxide layer above the restrictor and having fixed parts disposed on the oxide layer, slopes extending upward and away from the restrictor at an incline, and a parallel part extending between the slopes parallel to the substrate, a lead formed to be in electrical contact with the heater, a chamber layer formed to cover the lead and to define the ink chamber, and a nozzle layer formed on the chamber layer and having a nozzle. In the inkjet printer head, the lifespan of the heater may be extended since the heater is supported by the slopes, which function as a shock absorbing member when ink supply pressure or cavitation force is applied to a surface of the heater. In addition, since the heater does not have a right angle structure, the heater may be formed to have a uniform thickness even when a thin layer used for the heater is formed by a deposition method.