摘要:
A repeater environment is provided operative to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be derived by deploying a selected filter bank operative to process the signal on a bin by bin basis and the derived metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification. In an illustrative implementation, an exemplary repeater environment comprises, a transmitter, a receiver, an equalized feedback cancellation loop circuitry comprising a filter bank, the cancellation loop being operatively coupled to an antenna array. In the illustrative implementation, the feedback cancellation loop can receive signals as input from a cooperating antenna array and provide output signals such as a feedback leakage signal to a cooperating antenna array.
摘要:
Embodiments of a repeater environment can be operative to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification. Illustratively, the feedback cancellation loop of the exemplary repeater can be adapted by a metric that operatively adapts weights provided by performing a selected linear algebra technique to the feedback cancellation loop such that the metric can be indicative of the level of transmitter signal present at a receive and can be derived based on performing a correlation between the transmitted signal and the receiver signal. Further, operatively, the exemplary repeater can maintain a delay sufficient to preferably ensure that transmitted signal is de-correlated with the desired receiver signal, and time aligned and correlated with the feedback leakage signal.
摘要:
A first repeater operating within a wireless network including a second repeater capable of communicating with the first repeater, and first and second wireless station devices capable of communicating with at least one of the first repeater and the second repeater, includes a reception device for receiving a wireless signal at a reception frequency; a detector for detecting if a predetermined portion of the received wireless signal includes a modified portion to thereby determine that the received signal is from the second repeater; and a transmission device for transmitting the wireless signal to one of the first and second wireless station devices at a transmission frequency to thereby repeat the wireless signal.
摘要:
A repeater environment is provided to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be derived by deploying a one or more of selected metrics (e.g., composite metrics) comprising a selected filter bank operative to process the signal on a bin by bin basis and the derived metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification, beam forming operations, and pilot control and overhead channel control operations. In an illustrative implementation, an exemplary repeater environment comprises, a transmitter, a receiver, an equalized feedback cancellation loop circuitry comprising a filter bank, the cancellation loop being operatively coupled to an antenna array. In the illustrative implementation, the feedback cancellation loop can receive signals as input from a cooperating antenna array and provide output signals such as a feedback leakage signal to a cooperating
摘要:
A repeater environment is provided to operatively deploy a feedback cancellation loop that performs closed loop calculations for weights used by a feedback equalizer to improve signal integrity and amplification. In an illustrative implementation, an exemplary repeater environment comprises a transmitter, a receiver, an equalized feedback cancellation loop circuitry operative to perform one or more closed form calculations for equalizer weights. In the illustrative implementation, the feedback cancellation loop can comprise a calculation module operative to perform one or more closed form weight calculations using linear algebraic techniques as part of feedback signal cancel operations for use by the N tap feedback equalizer canceller.
摘要:
Methods and systems are provided to generate digital coefficients for a filter. The generation of coefficients relies on a Fourier transformation of an impulse response in time domain that is zero padded, e.g., zeros are appended to an array corresponding to a sampled input signal of length M. A unit prototypical filter is generated through a frequency domain response of length NFFT=NS+M−1, wherein NS is a sampling length of the incoming signal. The unit prototypical filter is then circularly shifted in order to generate a band pass filter centered at a desired frequency. Circularly shifted filters are point-to-point added to generate a set of composite digital coefficients to filter the incoming signal. The reference frequencies for the composite filter are extracted from a message received from one or more base stations associated with one or more service providers. The composite filter typically operates on a frequency repeater.
摘要翻译:提供方法和系统以产生用于滤波器的数字系数。 系数的产生依赖于零填充的时域中的脉冲响应的傅立叶变换,例如,零被附加到与长度为M的采样输入信号相对应的阵列上。通过频域响应产生单元原型滤波器 的长度N< N> = N S + M-1,其中N S S是输入信号的采样长度。 然后将单元原型滤波器循环移位,以便产生以期望频率为中心的带通滤波器。 循环移位滤波器是点对点相加以产生一组复合数字系数来滤波输入信号。 从与一个或多个服务提供商相关联的一个或多个基站接收的消息中提取复合滤波器的参考频率。 复合滤波器通常在频率转发器上运行。
摘要:
A repeater environment is provided operative to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be derived by deploying a selected filter bank having an automatic gain control operative to process the signal on a bin by bin basis and the derived metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification. In an illustrative implementation, an exemplary repeater environment comprises, a transmitter, a receiver, an equalized feedback cancellation loop circuitry comprising a filter bank, the cancellation loop being operatively coupled to an antenna array. In the illustrative implementation, the feedback cancellation loop can receive signals as input from a cooperating antenna array and provide output signals such as a feedback leakage signal to a cooperating antenna array.
摘要:
A wireless handset including an antenna array. The antenna array includes an active antenna element and two passive antenna elements. The active and passive antenna elements are arranged to form a triangle with a vertex. The vertex includes a vertex angle and the active antenna element is disposed at the vertex. The vertex angle is between 90 degrees and 180 degrees.
摘要:
A multiple-antenna device is provided, comprising: a printed circuit board having a ground plane configured to provide electromagnetic isolation between a first side of the printed circuit board and a second side of the printed circuit board; a first non-conductive support member formed over the first side of the printed circuit board; a second non-conductive support member formed over the second side of the printed circuit board; a first antenna formed over the first non-conductive support member; and a second antenna formed over the second non-conductive support member, wherein the first antenna is electrically connected to a first feed point on a first portion of the printed circuit board that is not connected to the ground plane, and wherein the second antenna is electrically connected to a second feed point on a second portion of the printed circuit board that is not connected to the ground plane.
摘要:
A repeater (200) facilitates wireless communication between a first communication device (100) and a second communication device (105) in a wireless network using a time division duplex protocol for data transmission. The repeater (200) includes a receiver (310, 315) for receiving a signal on either of at least two bi-directional communication frequencies simultaneously. A signal detector (362) is operatively coupled to the receiver (300, 310, 315) for determining if the signal is present on at least one of the two bi-directional frequencies. A frequency converter (320, 321, 323, 324, 360, 361) is for converting the signal present on one of the bi-directional frequencies to a converted signal on the other of the bi-directional frequencies. A transmitter (300, 325, 330, 335, 345, 350) is for transmitting the converted signal on the other of said bi-directional frequencies.