摘要:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared with a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer having ionic moieties and an infrared radiation sensitive dye having multiple sulfo groups. The heat-sensitive polymer and IR dye can be formulated in water or water-miscible solvents to provide highly thermal sensitive imaging compositions. In the imaging member, the polymer reacts to provide increased hydrophobicity in areas exposed to energy that provides or generates heat. For example, heat can be supplied by laser irradiation in the IR region of the electromagnetic spectrum. The heat-sensitive polymer is considered “switchable” in response to heat, and provides a lithographic image without wet processing.
摘要:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared with a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer having ionic moieties and an infrared radiation sensitive dye having multiple quaternary ammonium groups. The heat-sensitive polymer and IR dye can be formulated in water or water-miscible solvents to provide highly thermal sensitive imaging compositions. In the imaging member, the polymer reacts to provide increased hydrophobicity in areas exposed to energy that provides or generates heat. For example, heat can be supplied by laser irradiation in the IR region of the electromagnetic spectrum. The heat-sensitive polymer is considered “switchable” in response to heat, and provides a lithographic image without wet processing.
摘要:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared with a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer having ionic moieties and an infrared radiation sensitive dye having multiple sulfo groups. The heat-sensitive polymer and IR dye can be formulated in water or water-miscible solvents to provide highly thermal sensitive imaging compositions. In the imaging member, the polymer reacts to provide increased hydrophobicity in areas exposed to energy that provides or generates heat. For example, heat can be supplied by laser irradiation in the IR region of the electromagnetic spectrum. The heat-sensitive polymer is considered "switchable" in response to heat, and provides a lithographic image without wet processing.
摘要:
An imaging member, such as a negative-working printing plate, can be prepared using a hydrophilic heat-sensitive imaging layer comprised of a hydrophilic heat-sensitive, crosslinked vinyl polymer containing recurring organoonium groups. The imaging member can also include a photothermal conversion material such as carbon black or an infrared radiation absorbing dye. The heat-sensitive polymer has recurring units containing an organoammonium, organophosphonium or organosulfonium group that reacts to provide increased oleophilicity (ink receptivity) in response to heat. Heat is preferably generated by laser irradiation in the IR region of the electromagnetic spectrum. The heat-sensitive polymer is considered “switchable” in response to heat. The imaging member can be used in printing methods without the usual wet processing steps.
摘要:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared using a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer that comprises recurring units comprising quaternary ammonium carboxylate groups. The imaging member can also include an infrared radiation sensitive material to provide added sensitivity to heat that can be supplied by laser irradiation in the IR region. The heat-sensitive polymer is considered “switchable” in response to heat, and provides a lithographic image without wet processing.
摘要:
An imaging member, such as a negative-working printing plate or on-press cylinder, can be prepared with a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer having ionic moieties and a polymer grafted carbon as a photothermal conversion material. The heat-sensitive polymer and polymer grafted carbon can be formulated in water or water-miscible solvents without agglomeration. In the imaging member, the polymer reacts to provide increased hydrophobicity in areas exposed to energy that provides or generates heat. For example, heat can be supplied by laser irradiation in the IR region of the electromagnetic spectrum. The heat-sensitive polymer is considered “switchable” in response to heat, and provides a lithographic image without wet processing.
摘要:
An imaging member, such as a negative-working printing plate, can be prepared using a hydrophilic imaging layer comprised of a heat-sensitive hydrophilic polymer having a positively charged moiety, and optionally a photothermal conversion material. The heat-sensitive polymer has recurring units containing an N-alkylated aromatic heterocyclic group or an organoonium group that reacts to provide increased oleophilicity in areas exposed to energy that provides or generates heat. For example, heat can be supplied by laser irradiation in the IR region of the electromagnetic spectrum. Thus, the heat-sensitive polymer is considered “switchable” in response to heat, and provides an imaging means without wet processing.
摘要:
There is disclosed a recordable optical element that includes a dye. The element has a substrate and on the surface of the substrate, a dye containing recording layer and a light reflecting layer. The improvement is that the dye is a leuco dye.
摘要:
A dye-forming electrothermographic element comprises an electrically activatable recording layer comprising (a) a reducing agent or reducing agent precursor capable of being activated by a Lewis base; (b) a cobalt(III) Lewis base complex; and (c) at least one of (i) a reducible dye-forming compound that has an oxidation state above that of the conjugate dye, (ii) a dye capable of changing its wavelength of absorption by reaction with a Lewis base, and (iii) a dye-forming coupler capable of reacting with the oxidized form of the reducing agent in (a) to form a dye. A negative or positive dye image is formed in such a dye-forming electrothermographic element by applying an electrical potential imagewise to the element of a magnitude and for a time sufficient to produce in the image areas a charge density sufficient to produce a latent image; and, then, heating the element to a temperature and for a time sufficient to form a dye image in the element. The dye-forming electrothermographic element can be a multicolor, multilayer electrothermographic element.
摘要:
The present invention discloses optical recording elements having optical recording layers containing tetra dyes. The dyes have metallized azo dianionic dye with cationic dye counterions. The recording layer has a thickness from 225 to 300 nm.