摘要:
A routing mechanism provides network segmentation preservation by route distribution with segment identification, policy distribution for a given VPN segment, and encapsulation/decapsulation for each segment using an Ethernet VLAN_ID, indicative of the VPN segment (subnetwork). Encapsulated segmentation information in a message packet identifies which routing and forwarding table is employed for the next hop. A common routing instance receives the message packets from the common interface, and indexes a corresponding VRF table from the VLAN ID, or segment identifier, indicative of the subnetwork (e.g. segment). In this manner, the routing instance receives the incoming message packet, decapsulates the VLAN ID in the incoming message packet, and indexes the corresponding VRF and policy ID from the VLAN ID, therefore employing a common routing instance over a common subinterface for a plurality of segments (subnetworks) coupled to a particular forwarding device (e.g. VPN router).
摘要:
A method and apparatus for providing routing protocol support for distributing encryption information is presented. Subnet prefixes reachable on a first customer site in an encrypted manner are identified, as are security groups the subnet prefixes belong to. An advertisement is received at a first Customer Edge (CE) device in the first customer site, the advertisement originating from a Customer (C) device in the first customer site. The advertisement indicates links, subnets to be encrypted, and security group identifiers. The prefixes and the security group identifiers are then propagated across a service provider network to a second CE device located in a second customer site. In such a manner, encryption and authentication is expanded further into a customer site, as customer devices are able to indicate to a service provider network infrastructure and other customer devices in other customer sites which local destinations require encryption/authentication.
摘要:
A method and computer program product for providing autonomous system interconnect for a first peer device is presented. The method includes producing routing information at a first peer. Next, the first peer device provides a context identifier in the routing information. A context authenticator is also provided in the routing information at the first peer. The first peer then advertises this routing information to a second peer. The first peer only accepts messages from the second peer which include the context identifier and the context authenticator.
摘要:
A system provides a request for a policy from a policy server, and receives the policy from the policy server. The policy indicates processing to be applied to a traffic partition passing through the device. The system configures the policy within a routing structure associated with the traffic partition for the policy in the device, and routes a stream of traffic for the routing structure in accordance with the policy for that routing structure.
摘要:
A method, apparatus and computer program product for providing secure multipoint Internet Protocol Virtual Private Networks (IPVPNs) is presented. A packet lookup is performed in order to determine a next hop. A VPN label is pushed on the packet, as is an IP tunnel header. Group encryption through the use of DGVPN is further utilized. In such a manner secure connectivity and network partitioning are provided in a single solution.
摘要:
In general, techniques are described for enhancing the Application-Layer Traffic Optimization (ALTO) service to supplement network topological grouping with location-based groupings to account for endpoint mobility. For example, as described herein, an ALTO server maintains physical location information for a network of one or more endpoints that provides a service. A PID generator of the ALTO server aggregates the endpoints into a set of one or more PIDs based at least on the physical location information for the endpoints, wherein each PID is associated with a subset of the endpoints. The ALTO server generates network and cost maps for the ALTO service that include PID entries to identify a respective subset of the endpoints associated with each of the set of PIDs and cost entries that incorporate cost that reflect physical distances among endpoints.
摘要:
In general, techniques are described for transmitting MPLS labels over a network. More specifically, a network device such a router receives a packet to be forwarded according to a label switching protocol, such as Multi-Protocol Label Switching (MPLS). The router may determine a service instance for the packet based on a client device from which the packet originated. The network device may determine one or more services to apply to the packet based on the service instance for the packet and generate a label which having a service instance portion and a service information portion. The network device may append the label to the packet to form an MPLS-encapsulated packet, and may forward the MPLS-encapsulated packet via an output interface according to the label switching protocol.
摘要:
Techniques are described for detecting failure or degradation of a service enabling technology function independent from an operational state of a service node hosting the service enabling technology function. For example, a service node may provide one or more service enabling technology functions, and service engineered paths may be traffic-engineered through a network to service node network devices that host a service enabling technology function. A monitor component at the service layer of the service node can detect failure or degradation of one or more service enabling technology functions provided by the service node. The monitor component reports detection of failure or degradation to a fault detection network protocol in a forwarding plane of the service node. The fault detection network protocol communicates with an ingress router of a service engineered path to trigger fast reroute by the ingress of traffic flows to bypass the affected service enabling technology function.
摘要:
A novel fast reroute (FRR) technique is provided for quickly and efficiently rerouting selected types of network traffic in response to a node or link failure at the edge of a computer network. According to the technique, the network includes first and second edge devices that function as “FRR mates,” such that network traffic originally destined for one FRR mate may be quickly rerouted to the other without having to wait for conventional network convergence. When an edge device receives rerouted packets originally destined for its FRR mate, the device responds by forwarding only those rerouted packets matching the selected traffic types; rerouted packets that do not match the selected traffic types are dropped or otherwise discarded. The first and second edge devices may be statically configured as FRR mates, e.g., by a network administrator, or they may be configured to automatically detect their compatibility as FRR mates.
摘要:
In response to a failure within a sub-network of a heterogeneous network, an external device is signaled that the failure has occurred by inclusion of an encoded identifier of the failure location with the signaling. The encoded identifier enables identification of the failure location within the sub-network while masking the identity of the failure location to the external device, and may be realized by using an encrypted sub-object or a token that is associated with the failure location information, which remains stored within the sub-network. The external device responds by issuing a path-establishment message indicating that a new communications path should be established and should exclude the failure location as identified by the encoded identifier, which is included in the path-establishment message. A device within the sub-network responds by determining whether a path segment for the new communications path can be provided while excluding the failure location as identified by the encoded identifier from the path-establishment message, and further path-setup functions are performed based on the determination.