摘要:
Systems and methods for implementing and using nonblocking zero-indirection software transactional memory (NZSTM) are disclosed. NZSTM systems implement object-based software transactional memory that eliminates all levels of indirection except in the uncommon case of a conflict with an unresponsive thread. Shared data is co-located with a header in an NZObject, and is addressable at a fixed offset from the header. Conflicting transactions are requested to abort themselves without being forced to abort. NZObjects are modified in place when there are no conflicts, and when a conflicting transaction acknowledges the abort request. In the uncommon case, NZObjects are inflated to introduce a locator and some levels of indirection, and are restored to their un-inflated form following resolution of the conflict. In some embodiments, transactions are executed using best effort hardware transactional memory if it is available and effective, and software transactional memory if not, yielding a hybrid transactional memory system, NZTM.
摘要:
A hybrid Single-Compare-Single-Store (SCSS) operation may exploit best-effort hardware transactional memory (HTM) for good performance in the case that it succeeds, and may transparently resort to software-mediated transactions if the hardware transactional mechanisms fail. The SCSS operation may compare a value in a control location to a specified expected value, and if they match, may store a new value in a separate data location. The control value may include a global lock, a transaction status indicator, and/or a portion of an ownership record, in different embodiments. If another transaction in progress owns the data location, the SCSS operation may abort the other transaction or may help it complete by copying the other transactions' write set into its own right set before acquiring ownership. A hybrid SCSS operation, which is usually nonblocking, may be applied to building software transactional memories (STMs) and/or hybrid transactional memories (HyTMs), in some embodiments.