摘要:
A look-up table for use in a printing system is created. The printing system prints an input image in a print color space. The look-up table is created by accessing a predetermined look-up table representing a mapping of color values of an input color space to ink-vectors of a print color space; applying a p-by-q halftone threshold matrix to each ink-vector of the predetermined look-up table to generate a p-by-q halftone cell for each ink-vector; and creating a further look-up table which maps, at least a sample of, the color values of input color space to the at least one halftone cell.
摘要:
A processing apparatus is provided. The processing apparatus includes a controller to process information as part of a Halftone Area Neugebauer Separation printing process to use at least one opaque ink as a process colorant in combination with at least one further process colorant.
摘要:
A method of defining color separation for printing an image via NPacs, the method comprising: selecting a plurality of NPacs corresponding to a plurality of points within an RGB cube to provide a tessellation in RGB space translated to a valid tessellation in an NPac-related space; and defining color separation from the selected NPacs.
摘要:
Certain examples described herein relate to apparatus arranged to produce a three-dimensional object. These examples enable color and material properties of such an apparatus to be characterized. This is achieved through the generation of configuration data for the apparatus that maps at least one color property to one or more material volume coverage vector values. This allows for appropriate quantities of materials available to the apparatus to be used to produce colors defined in received object data for the three-dimensional object.
摘要:
In an example, a method for generating control data for production of a three-dimensional object is described. A model of the three-dimensional object is obtained as a array of voxels, and it is determined for each voxel whether that voxel comprises part of a first or a second sub-object of the three-dimensional object. Each first sub-object voxel is mapped to a volume coverage representation defining print material data for that voxel. The second sub-object voxels are mapped to a volume coverage representation defining common print material data for the voxels of second sub-object. Control data for printing the first sub-object is generated from the print material data for that voxel common print material data for the Control data for printing the second sub-object is generated according to the volume coverage representation for the second sub-object.
摘要:
In an example, a method for generating control data for production of a three-dimensional object is described. A model of the three-dimensional object is obtained as a array of voxels, and it is determined for each voxel whether that voxel comprises part of a first or a second sub-object of the three-dimensional object. Each first sub-object voxel is mapped to a volume coverage representation defining print material data for that voxel. The second sub-object voxels are mapped to a volume coverage representation defining common print material data for the voxels of second sub-object. Control data for printing the first sub-object is generated from the print material data for that voxel common print material data for the Control data for printing the second sub-object is generated according to the volume coverage representation for the second sub-object.
摘要:
A method of processing data in a multi-stage imaging pipeline, the method comprising, at each stage of the multi-stage imaging pipeline, identifying a plurality of encoding values represented in received input data in a given encoding space for the respective pipeline stage, the identified plurality of encoding values comprising a subset of encoded values which are capable of being represented in the given encoding space, generating a list of encoding indices corresponding to the identified plurality of encoded values in the given encoding space, representing the encodings of one or more entities of the received input data using the generated list of encoding indices, and outputting the represented encodings of the one or more entities to the next stage of the multi-stage imaging pipeline.
摘要:
At least a portion of a 3-D object is converted into a format suitable for printing. A material volume coverage vector for each voxel of a 3-D bit map of a 3-D object is determined. The 3-D bit map comprises a plurality of voxels, each voxel located at a unique 3-D location. A rectangular cuboid comprising an M×N×L array of voxel locations enclosing at least a portion of the 3-D object is determined. A halftone threshold matrix comprising an array of threshold values is provided. The halftone threshold matrix is converted to provide an M×N×L 3-D array of threshold values. Each material volume coverage vector of the at least a portion is compared with each threshold value at corresponding 3-D locations to select a printable voxel at each 3-D location to convert the at least a portion of the 3-D object into a format suitable for printing.
摘要:
A color image is processed into a renderable image. The color image comprises a plurality of pixels. Each pixel has colorimetry defined in a first color space. The renderable image comprises a plurality of renderable pixels defined by a device-vector in a second color space. For each pixel: a device-vector defined in the second color space is selected (301) based on the colorimetry defined in a first color space of the pixel. The device-vector comprises a plurality of elements. Each element includes an identifier and an accumulated weighting. An element of the selected device-vector is reselected (303) until the accumulated weighting (a) is greater than a threshold value (t) associated with the pixel (305). The levels for each color of the second color space (or mappings) for the currently selected (307) element of the selected device-vector is determined (309) to convert the pixel into a renderable pixel.
摘要:
In a method to generate a print specification color separation look-up table, a device color space is sampled to provide at least one sampled value. The sampled value is transformed to a device independent color space. The transformed sampled value is gamut mapped using a source color gamut and a color separation color gamut to provide a color separation value. The gamut mapping is performed in an expansion mode and a compression mode.